Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32464
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBELLO GARCIA, Marilyn-
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorSánchez, Ricardo-
dc.contributor.authorVANHOOF, Koen-
dc.contributor.authorBello, Rafael-
dc.date.accessioned2020-10-14T07:21:56Z-
dc.date.available2020-10-14T07:21:56Z-
dc.date.issued2020-
dc.date.submitted2020-10-13T23:15:56Z-
dc.identifier.citationBello, Rafael; Miao, Falcon; Rafael, Duoqian; Nakata, Michinori; Rosete, Alejandro; Ciucci, Davide (Ed.). Rough sets, IJCRS 2020, Springer-VERLAG Berlin , p. 225 -235-
dc.identifier.isbn978-3-030-52704-4-
dc.identifier.isbn9783030527051-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/32464-
dc.description.abstractPooling layers help reduce redundancy and the number of parameters before building a multilayered neural network that performs the remaining processing operations. Usually, pooling operators in deep learning models use an explicit topological organization, which is not always possible to obtain on multi-label data. In a previous paper, we proposed a pooling architecture based on association to deal with this issue. The association was defined by means of Pearson's correlation. However, features must exhibit a certain degree of correlation with each other, which might not hold in all situations. In this paper, we propose a new method that replaces the correlation measure with another one that computes the entropy in the information granules that are generated from two features or labels. Numerical simulations have shown that our proposal is superior in those datasets with low correlation. This means that it induces a significant reduction in the number of parameters of neural networks, without affecting their accuracy.-
dc.language.isoen-
dc.publisherSpringer-VERLAG Berlin-
dc.relation.ispartofseriesLecture Notes in Artificial Intelligence-
dc.rightsSpringer Nature Switzerland AG 2020-
dc.subject.otherGranular computing-
dc.subject.otherRough sets-
dc.subject.otherAssociation-based pooling-
dc.subject.otherDeep learning-
dc.subject.otherMulti-label classification-
dc.titleFeature and Label Association Based on Granulation Entropy for Deep Neural Networks-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsBello, Rafael-
local.bibliographicCitation.authorsMiao, Duoqian-
local.bibliographicCitation.authorsFalcon, Rafael-
local.bibliographicCitation.authorsNakata, Michinori-
local.bibliographicCitation.authorsRosete, Alejandro-
local.bibliographicCitation.authorsCiucci, Davide-
dc.identifier.epage235-
dc.identifier.spage225-
dc.identifier.volume12179-
local.format.pages11-
local.bibliographicCitation.jcatC1-
local.publisher.placeHEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMAN-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr12179-
dc.identifier.doi10.1007/978-3-030-52705-1_17-
dc.identifier.isi000713415600017-
local.provider.typeCrossRef-
local.bibliographicCitation.btitleRough sets, IJCRS 2020-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationBELLO GARCIA, Marilyn; NAPOLES RUIZ, Gonzalo; Sánchez, Ricardo; VANHOOF, Koen & Bello, Rafael (2020) Feature and Label Association Based on Granulation Entropy for Deep Neural Networks. In: Bello, Rafael; Miao, Falcon; Rafael, Duoqian; Nakata, Michinori; Rosete, Alejandro; Ciucci, Davide (Ed.). Rough sets, IJCRS 2020, Springer-VERLAG Berlin , p. 225 -235.-
item.validationecoom 2022-
item.validationvabb 2022-
item.accessRightsOpen Access-
item.contributorBELLO GARCIA, Marilyn-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorSánchez, Ricardo-
item.contributorVANHOOF, Koen-
item.contributorBello, Rafael-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Bello2020_Chapter_FeatureAndLabelAssociationBase.pdf
  Restricted Access
Published version504.16 kBAdobe PDFView/Open    Request a copy
32464a.pdfPeer-reviewed author version286 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.