Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32686
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZAQUEN, Neomy-
dc.contributor.authorRUBENS, Maarten-
dc.contributor.authorCorrigan, Nathaniel-
dc.contributor.authorXu, Jiangtao-
dc.contributor.authorZetterlund, Per B.-
dc.contributor.authorBoyer, Cyrille-
dc.contributor.authorJUNKERS, Tanja-
dc.date.accessioned2020-11-24T11:22:05Z-
dc.date.available2020-11-24T11:22:05Z-
dc.date.issued2020-
dc.date.submitted2020-11-05T10:06:46Z-
dc.identifier.citationPROGRESS IN POLYMER SCIENCE, 107 (Art N° 101256)-
dc.identifier.urihttp://hdl.handle.net/1942/32686-
dc.description.abstractA variety of polymerizations has long been performed in continuous flow reactors on an industrial scale; comparatively, on smaller scales, continuous polymerization methods have only gained significant attention in recent years. Yet, within the last decade, the field has moved from the rare occurrence of flow reactors to their abundant use today. A wide variety of polymer reactions have been performed in a continuous fashion on small and intermediate scales. The advantages of applying flow chemistry principles for polymer reactions include increased reproducibility and synthetic precision, significant increases in reaction performances for photochemical reactions, the ability to couple reactors to create complex materials in a single reactor pass, as well as the unique combination of online monitoring and machine learning. In this review we give a comprehensive overview of polymer reactions being carried out in continuous flow reactors to date. The development of the field is discussed, concluding with the most recent examples on automated polymer synthesis, reactor telescoping and nanoparticle synthesis. Finally, the design of flow reactors is discussed to help newcomers contribute to the current and future developments in the field.-
dc.description.sponsorshipNZ is grateful for support from the European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 665501 with the Research Foundation Flanders (FWO). TJ and MR are grateful for support from the Flemish Fonds Wetenschappelijk Onderzoek (FWO). J. X. acknowledges the Australian Research Council (ARC) for the financial support under the schemes of Future Fellowship (FT160100095). The Australian Research Council (ARC) is gratefully acknowledged for the financial support under the Discovery Project scheme for DP190100067 (CB, JX and NC) and DP190103309 (TJ).-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.rights(C) 2020 Elsevier B.V. All rights reserved.-
dc.subject.otherFlow polymerization-
dc.subject.otherHomogeneous polymerization-
dc.subject.otherHeterogeneous polymerization-
dc.subject.otherPolymer modification-
dc.subject.otherPhotopolymerizationa-
dc.titlePolymer Synthesis in Continuous Flow Reactors-
dc.typeJournal Contribution-
dc.identifier.volume107-
local.format.pages40-
local.bibliographicCitation.jcatA1-
dc.description.notesJunkers, T (corresponding author), Monash Univ, Sch Chem, Polymer React Design PRD Grp, Clayton, Vic 3800, Australia.-
dc.description.notestanja.junkers@monash.edu-
dc.description.otherJunkers, T (corresponding author), Monash Univ, Sch Chem, Polymer React Design PRD Grp, Clayton, Vic 3800, Australia. tanja.junkers@monash.edu-
local.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedReview-
local.bibliographicCitation.artnr101256-
dc.identifier.doi10.1016/j.progpolymsci.2020.101256-
dc.identifier.isiWOS:000549310200001-
dc.contributor.orcidCorrigan, Nathaniel/0000-0001-7876-1908; Xu,-
dc.contributor.orcidJiangtao/0000-0002-9020-7018-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Zaquen, Neomy; Rubens, Maarten; Junkers, Tanja] Hasselt Univ, Inst Mat Res IMO, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.description.affiliation[Zaquen, Neomy; Corrigan, Nathaniel; Xu, Jiangtao; Zetterlund, Per B.; Boyer, Cyrille] Univ New South Wales UNSW, Sch Chem Engn, Ctr Adv Macromol Design CAMD, Sydney, NSW 2052, Australia.-
local.description.affiliation[Zaquen, Neomy; Corrigan, Nathaniel; Xu, Jiangtao; Boyer, Cyrille] Univ New South Wales UNSW, Sch Chem Engn, Australian Ctr Nanomed, Sydney, NSW 2052, Australia.-
local.description.affiliation[Rubens, Maarten; Junkers, Tanja] Monash Univ, Sch Chem, Polymer React Design PRD Grp, Clayton, Vic 3800, Australia.-
item.validationecoom 2021-
item.contributorZAQUEN, Neomy-
item.contributorRUBENS, Maarten-
item.contributorCorrigan, Nathaniel-
item.contributorXu, Jiangtao-
item.contributorZetterlund, Per B.-
item.contributorBoyer, Cyrille-
item.contributorJUNKERS, Tanja-
item.accessRightsRestricted Access-
item.fullcitationZAQUEN, Neomy; RUBENS, Maarten; Corrigan, Nathaniel; Xu, Jiangtao; Zetterlund, Per B.; Boyer, Cyrille & JUNKERS, Tanja (2020) Polymer Synthesis in Continuous Flow Reactors. In: PROGRESS IN POLYMER SCIENCE, 107 (Art N° 101256).-
item.fulltextWith Fulltext-
crisitem.journal.issn0079-6700-
crisitem.journal.eissn1873-1619-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ZaquenN_2020.pdf
  Restricted Access
Published version11.34 MBAdobe PDFView/Open    Request a copy
Show simple item record

WEB OF SCIENCETM
Citations

83
checked on May 1, 2024

Page view(s)

40
checked on Sep 7, 2022

Download(s)

6
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.