Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/327
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMICHIELS, Bart-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2004-10-22T12:52:58Z-
dc.date.available2004-10-22T12:52:58Z-
dc.date.issued1997-
dc.identifier.citationCommunications in Statistics Theory and Methods, 26(1). p. 65-94-
dc.identifier.urihttp://hdl.handle.net/1942/327-
dc.description.abstractPartially observed longitudinal categorical data, where the partial classification arises due to monotone dropout, are analyzed using a protective estimator, which was first suggested by Brown (Biometrics, 1990) for normally distributed data. It is appropriate when dropout depends on the unobserved outcomes only, a particular type of nonignorable nonresponse. Estimation of measurement parameters is possible, without explicitly modelling the dropout process. Necessary and sufficient conditions are derived in order to have a unique solution in the interior of the parameter space. It is shown that precision estimates can be based on the delta method, the EM algorithm, and on multiple imputation. The relative merits of these techniques are discussed and they are contrasted with direct likelihood estimation and with pseudo-likelihood estimation. The method is illustrated using data taken from a psychiatric study.-
dc.language.isoen-
dc.rightsCopyright (c) 1997 by Marcel Dekker, Inc-
dc.subjectMissing data-
dc.subjectCategorical data-
dc.subjectLongitudinal data-
dc.subject.othercontingency table; missing values; pattern-mixture models; selection models; pseudo-likelihood estimation; multiple imputation-
dc.titleProtective estimation of longitudinal categorical data with nonrandom dropout-
dc.typeJournal Contribution-
dc.identifier.epage94-
dc.identifier.issue1-
dc.identifier.spage65-
dc.identifier.volume26-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1080/03610929708831902-
dc.identifier.isiA1997WF24700007-
item.contributorMICHIELS, Bart-
item.contributorMOLENBERGHS, Geert-
item.fullcitationMICHIELS, Bart & MOLENBERGHS, Geert (1997) Protective estimation of longitudinal categorical data with nonrandom dropout. In: Communications in Statistics Theory and Methods, 26(1). p. 65-94.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
michiels1997.pdf
  Restricted Access
Published version787.91 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.