Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/32858
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ANH-KHOA, Vo | - |
dc.contributor.author | Ijioma, Ekeoma Rowland | - |
dc.contributor.author | Ngoc, Nguyen Nhu | - |
dc.date.accessioned | 2020-12-10T13:04:35Z | - |
dc.date.available | 2020-12-10T13:04:35Z | - |
dc.date.issued | 2020 | - |
dc.date.submitted | 2020-12-01T09:34:35Z | - |
dc.identifier.citation | Computational & Applied Mathematics, 39 (4) (Art N° 281) | - |
dc.identifier.uri | http://hdl.handle.net/1942/32858 | - |
dc.description.abstract | This work is devoted to the development and analysis of a linearization algorithm for microscopic elliptic equations, with scaled degenerate production, posed in a perforated medium and constrained by the homogeneous Neumann-Dirichlet boundary conditions. This technique plays two roles: to guarantee the unique weak solvability of the microscopic problem and to provide a fine approximation in the macroscopic setting. The scheme systematically relies on the choice of a stabilization parameter in such a way as to guarantee the strong convergence in H-1 norm for both the microscopic and macroscopic problems. In the standard variational setting, we prove the H-1-type contraction at the micro-scale based on the energy method. Meanwhile, we adopt the classical homogenization result in line with corrector estimate to show the convergence of the scheme at the macro-scale. In the numerical section, we use the standard finite element method to assess the efficiency and convergence of our proposed algorithm. | - |
dc.description.sponsorship | V.A.K. thanks Prof. Adrian Muntean for being his supervisor since March, 2015 and for giving him invaluable advice. V.A.K thanks Prof. Iuliu Sorin Pop (Hasselt, Belgium) for recent supports in his research career and acknowledges the hospitality of the Hasselt University during the time he is hosted as a postdoctoral fellow. N.N.N. acknowledges the support of the project INdAM Doctoral Programme in Mathematics and/or Applications Cofunded by Marie Sklodowska-Curie Actions, acronym: INdAM-DP-COFUND-2015, grant number: 713485. | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER HEIDELBERG | - |
dc.rights | SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020 | - |
dc.subject.other | Microscopic problems | - |
dc.subject.other | Linearization | - |
dc.subject.other | Well-posedness | - |
dc.subject.other | Homogenization | - |
dc.subject.other | Error estimates | - |
dc.subject.other | Perforated domains | - |
dc.title | Strong convergence of a linearization method for semi-linear elliptic equations with variable scaled production | - |
dc.type | Journal Contribution | - |
dc.identifier.issue | 4 | - |
dc.identifier.volume | 39 | - |
local.format.pages | 23 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Ngoc, NN (corresponding author), Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy. | - |
dc.description.notes | vakhoa.hcmus@gmail.com; e.r.ijioma@gmail.com; nhungoc.nguyen@polimi.it | - |
dc.description.other | Ngoc, NN (corresponding author), Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy. vakhoa.hcmus@gmail.com; e.r.ijioma@gmail.com; nhungoc.nguyen@polimi.it | - |
local.publisher.place | TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 281 | - |
dc.identifier.doi | 10.1007/s40314-020-01334-0 | - |
dc.identifier.isi | WOS:000574253600001 | - |
dc.contributor.orcid | Khoa, Vo Anh/0000-0003-4233-0895 | - |
dc.identifier.eissn | 1807-0302 | - |
local.provider.type | wosris | - |
local.uhasselt.uhpub | yes | - |
local.description.affiliation | [Khoa, Vo Anh] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA. | - |
local.description.affiliation | [Khoa, Vo Anh] Hasselt Univ, Fac Sci, Campus Diepenbeek,Agoralaan Bldg D, BE-3590 Diepenbeek, Belgium. | - |
local.description.affiliation | [Ijioma, Ekeoma Rowland] Meiji Inst Adv Study Math Sci, Nakano Ku, 4-21-1 Nakano, Tokyo, Japan. | - |
local.description.affiliation | [Ngoc, Nguyen Nhu] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy. | - |
local.uhasselt.international | yes | - |
item.fulltext | With Fulltext | - |
item.fullcitation | ANH-KHOA, Vo; Ijioma, Ekeoma Rowland & Ngoc, Nguyen Nhu (2020) Strong convergence of a linearization method for semi-linear elliptic equations with variable scaled production. In: Computational & Applied Mathematics, 39 (4) (Art N° 281). | - |
item.contributor | ANH-KHOA, Vo | - |
item.contributor | Ijioma, Ekeoma Rowland | - |
item.contributor | Ngoc, Nguyen Nhu | - |
item.validation | ecoom 2021 | - |
item.accessRights | Open Access | - |
crisitem.journal.issn | 2238-3603 | - |
crisitem.journal.eissn | 1807-0302 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
COAM-D-19-01302R1.pdf | Peer-reviewed author version | 2.07 MB | Adobe PDF | View/Open |
Khoa2020_Article_StrongConvergenceOfALinearizat.pdf Restricted Access | Published version | 1.14 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.