Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32858
Full metadata record
DC FieldValueLanguage
dc.contributor.authorANH-KHOA, Vo-
dc.contributor.authorIjioma, Ekeoma Rowland-
dc.contributor.authorNgoc, Nguyen Nhu-
dc.date.accessioned2020-12-10T13:04:35Z-
dc.date.available2020-12-10T13:04:35Z-
dc.date.issued2020-
dc.date.submitted2020-12-01T09:34:35Z-
dc.identifier.citationComputational & Applied Mathematics, 39 (4) (Art N° 281)-
dc.identifier.urihttp://hdl.handle.net/1942/32858-
dc.description.abstractThis work is devoted to the development and analysis of a linearization algorithm for microscopic elliptic equations, with scaled degenerate production, posed in a perforated medium and constrained by the homogeneous Neumann-Dirichlet boundary conditions. This technique plays two roles: to guarantee the unique weak solvability of the microscopic problem and to provide a fine approximation in the macroscopic setting. The scheme systematically relies on the choice of a stabilization parameter in such a way as to guarantee the strong convergence in H-1 norm for both the microscopic and macroscopic problems. In the standard variational setting, we prove the H-1-type contraction at the micro-scale based on the energy method. Meanwhile, we adopt the classical homogenization result in line with corrector estimate to show the convergence of the scheme at the macro-scale. In the numerical section, we use the standard finite element method to assess the efficiency and convergence of our proposed algorithm.-
dc.description.sponsorshipV.A.K. thanks Prof. Adrian Muntean for being his supervisor since March, 2015 and for giving him invaluable advice. V.A.K thanks Prof. Iuliu Sorin Pop (Hasselt, Belgium) for recent supports in his research career and acknowledges the hospitality of the Hasselt University during the time he is hosted as a postdoctoral fellow. N.N.N. acknowledges the support of the project INdAM Doctoral Programme in Mathematics and/or Applications Cofunded by Marie Sklodowska-Curie Actions, acronym: INdAM-DP-COFUND-2015, grant number: 713485.-
dc.language.isoen-
dc.publisherSPRINGER HEIDELBERG-
dc.rightsSBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020-
dc.subject.otherMicroscopic problems-
dc.subject.otherLinearization-
dc.subject.otherWell-posedness-
dc.subject.otherHomogenization-
dc.subject.otherError estimates-
dc.subject.otherPerforated domains-
dc.titleStrong convergence of a linearization method for semi-linear elliptic equations with variable scaled production-
dc.typeJournal Contribution-
dc.identifier.issue4-
dc.identifier.volume39-
local.format.pages23-
local.bibliographicCitation.jcatA1-
dc.description.notesNgoc, NN (corresponding author), Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy.-
dc.description.notesvakhoa.hcmus@gmail.com; e.r.ijioma@gmail.com; nhungoc.nguyen@polimi.it-
dc.description.otherNgoc, NN (corresponding author), Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy. vakhoa.hcmus@gmail.com; e.r.ijioma@gmail.com; nhungoc.nguyen@polimi.it-
local.publisher.placeTIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr281-
dc.identifier.doi10.1007/s40314-020-01334-0-
dc.identifier.isiWOS:000574253600001-
dc.contributor.orcidKhoa, Vo Anh/0000-0003-4233-0895-
dc.identifier.eissn1807-0302-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Khoa, Vo Anh] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA.-
local.description.affiliation[Khoa, Vo Anh] Hasselt Univ, Fac Sci, Campus Diepenbeek,Agoralaan Bldg D, BE-3590 Diepenbeek, Belgium.-
local.description.affiliation[Ijioma, Ekeoma Rowland] Meiji Inst Adv Study Math Sci, Nakano Ku, 4-21-1 Nakano, Tokyo, Japan.-
local.description.affiliation[Ngoc, Nguyen Nhu] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationANH-KHOA, Vo; Ijioma, Ekeoma Rowland & Ngoc, Nguyen Nhu (2020) Strong convergence of a linearization method for semi-linear elliptic equations with variable scaled production. In: Computational & Applied Mathematics, 39 (4) (Art N° 281).-
item.contributorANH-KHOA, Vo-
item.contributorIjioma, Ekeoma Rowland-
item.contributorNgoc, Nguyen Nhu-
item.validationecoom 2021-
item.accessRightsOpen Access-
crisitem.journal.issn2238-3603-
crisitem.journal.eissn1807-0302-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
COAM-D-19-01302R1.pdfPeer-reviewed author version2.07 MBAdobe PDFView/Open
Khoa2020_Article_StrongConvergenceOfALinearizat.pdf
  Restricted Access
Published version1.14 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.