Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/328
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | GOETGHEBEUR, Els | - |
dc.date.accessioned | 2004-10-22T12:53:10Z | - |
dc.date.available | 2004-10-22T12:53:10Z | - |
dc.date.issued | 1997 | - |
dc.identifier.citation | Journal of the Royal Statistical Society, series B, 59 (2), p. 401-414 | - |
dc.identifier.issn | 1369-7412 | - |
dc.identifier.uri | http://hdl.handle.net/1942/328 | - |
dc.description.abstract | A popular approach to estimation based on incomplete data is the EM algorithm. For categorical data, this paper presents a simple expression of the observed data log-likelihood and its derivatives in terms of the complete data for a broad class of models and missing data patterns. We show that using the observed data likelihood directly is easy and has some advantages. One can gain considerable computational speed over the EM algorithm and a straightforward variance estimator is obtained for the parameter estimates. The general formulation treats a wide range of missing data problems in a uniform way. Two examples are worked out in full | - |
dc.description.sponsorship | The research of the second author was sponsored by the Flemish Institute for Scientific Research Relevant to Industry-IWT. | - |
dc.language.iso | en | - |
dc.rights | (C) 1997 Royal Statistical Society | - |
dc.subject | Categorical data | - |
dc.subject | Multivariate data | - |
dc.subject | Longitudinal data | - |
dc.subject.other | coarsened data; EM algorithm; Fisher scoring algorithm; generalized linear models; longitudinal data; maximum likelihood estimation; missing values; multivariate categorical data; repeated measures | - |
dc.title | Simple fitting algorithms for incomplete categorical data | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 414 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 401 | - |
dc.identifier.volume | 59 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | - | |
dc.identifier.doi | 10.1111/1467-9868.00075 | - |
dc.identifier.isi | A1997WP77100006 | - |
item.fullcitation | MOLENBERGHS, Geert & GOETGHEBEUR, Els (1997) Simple fitting algorithms for incomplete categorical data. In: Journal of the Royal Statistical Society, series B, 59 (2), p. 401-414. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | GOETGHEBEUR, Els | - |
crisitem.journal.issn | 1369-7412 | - |
crisitem.journal.eissn | 1467-9868 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2346053.pdf Restricted Access | Published version | 1.4 MB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
26
checked on Sep 30, 2025
WEB OF SCIENCETM
Citations
21
checked on Oct 4, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.