Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32902
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGENTIL RAMIRES, Thiago-
dc.contributor.authorOrtega, Edwin M. M.-
dc.contributor.authorLemonte, Artur J.-
dc.contributor.authorHENS, Niel-
dc.contributor.authorCordeiro, Gauss M.-
dc.date.accessioned2020-12-14T11:04:48Z-
dc.date.available2020-12-14T11:04:48Z-
dc.date.issued2020-
dc.date.submitted2020-12-11T13:59:07Z-
dc.identifier.citationCommunications in statistics. Simulation and computation, 49 (10) , p. 2639 -2660-
dc.identifier.issn0361-0918-
dc.identifier.urihttp://hdl.handle.net/1942/32902-
dc.description.abstractThe cure fraction models are useful to model lifetime data with long-term survivors. In this paper, we introduce a flexible cure rate survival model where the model parameters are related to covariates in different regression structures. The regression model allows to model jointly the location, scale and shape effects. The maximum likelihood method is employed to estimate the model parameters. We provide Monte Carlo simulation experiments to verify the performance of the maximum likelihood estimates for different sample sizes and cure rate percentages. Furthermore, some diagnostic measures to assess departures from model assumptions as well as to detect outlying observations are also considered. Finally, applications to real data are presented to show the usefulness of the new cure rate model.-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.subject.otherBi-modality-
dc.subject.otherCure rate models-
dc.subject.otherParametric inference-
dc.subject.otherResidual analysis-
dc.subject.otherSensitivity analysis-
dc.titleA flexible bimodal model with long-term survivors and different regression structures-
dc.typeJournal Contribution-
dc.identifier.epage2660-
dc.identifier.issue10-
dc.identifier.spage2639-
dc.identifier.volume49-
local.format.pages22-
local.bibliographicCitation.jcatA1-
dc.description.notesLemonte, AJ (corresponding author), Univ Fed Rio Grande do Norte, Dept Stat, Rio Grande Do Norte, RN, Brazil.-
dc.description.notesarturlemonte@gmail.com-
dc.description.otherLemonte, AJ (corresponding author), Univ Fed Rio Grande do Norte, Dept Stat, Rio Grande Do Norte, RN, Brazil. arturlemonte@gmail.com-
local.publisher.place530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/03610918.2018.1524902-
dc.identifier.isiWOS:000583996000008-
dc.contributor.orcidOrtega, Edwin/0000-0003-3999-7402-
dc.identifier.eissn1532-4141-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Ramires, Thiago G.] Fed Univ Tecnol Parana, Dept Math, Apucarana, Brazil.-
local.description.affiliation[Ramires, Thiago G.] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat I Biost, Hasselt, Belgium.-
local.description.affiliation[Ortega, Edwin M. M.] Univ Sao Paulo, Dept Exact Sci, Sao Paulo, SP, Brazil.-
local.description.affiliation[Lemonte, Artur J.; Hens, Niel] Univ Fed Rio Grande do Norte, Dept Stat, Rio Grande Do Norte, RN, Brazil.-
local.description.affiliation[Hens, Niel] Univ Antwerp, Vaccine & Infect Dis Inst, Ctr Hlth Econ Res & Modelling Infect Dis, Antwerp, Belgium.-
local.description.affiliation[Cordeiro, Gauss M.] Univ Fed Pernambuco, Dept Stat, Pernambuco, Brazil.-
local.uhasselt.internationalyes-
item.fullcitationGENTIL RAMIRES, Thiago; Ortega, Edwin M. M.; Lemonte, Artur J.; HENS, Niel & Cordeiro, Gauss M. (2020) A flexible bimodal model with long-term survivors and different regression structures. In: Communications in statistics. Simulation and computation, 49 (10) , p. 2639 -2660.-
item.contributorGENTIL RAMIRES, Thiago-
item.contributorOrtega, Edwin M. M.-
item.contributorLemonte, Artur J.-
item.contributorHENS, Niel-
item.contributorCordeiro, Gauss M.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.validationecoom 2021-
crisitem.journal.issn0361-0918-
crisitem.journal.eissn1532-4141-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
a173617.pdfPeer-reviewed author version679.15 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.