Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32923
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen Huy Tuan-
dc.contributor.authorANH-KHOA, Vo-
dc.contributor.authorPhan Thi Khanh Van-
dc.contributor.authorVo Van Au-
dc.date.accessioned2020-12-15T10:23:38Z-
dc.date.available2020-12-15T10:23:38Z-
dc.date.issued2021-
dc.date.submitted2020-12-14T11:33:55Z-
dc.identifier.citationJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 384 (Art N° 113176)-
dc.identifier.issn0377-0427-
dc.identifier.urihttp://hdl.handle.net/1942/32923-
dc.description.abstractUpon the recent development of the quasi-reversibility method for terminal value parabolic problems in Nguyen et al. (2019), it is imperative to investigate the convergence analysis of this regularization method in the stochastic setting. In this paper, we positively unravel this open question by focusing on a coupled system of Dirichlet reaction-diffusion equations with additive white Gaussian noise on the terminal data. In this regard, the approximate problem is designed by adding the so-called perturbing operator to the original problem and by exploiting the Fourier reconstructed terminal data. By this way, Gevrey-type source conditions are included, while we successfully maintain the logarithmic stability estimate of the corresponding stabilized operator, which is necessary for the error analysis. As the main theme of this work, we prove the error bounds for the concentrations and for the concentration gradients, driven by a large amount of weighted energy-like controls involving the expectation operator. Compared to the classical error bounds in L-2 and H-1 that we obtained in the previous studies, our analysis here needs a higher smoothness of the true terminal data to ensure their reconstructions from the stochastic fashion. Two numerical examples are provided to corroborate the theoretical results. Published by Elsevier B.V.-
dc.description.sponsorshipV.A. Khoa was funded by US Army Research Laboratory and US Army Research Office grant W911NF-19-1-0044. V.A. Khoa's work was also partly supported by the Research Foundation-Flanders (FWO), Belgium under the project named "Approximations for forward and inverse reaction-diffusion problems related to cancer models''. N.H. Tuan and V.V. Au are funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under Grant No. B2020-18-03.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rightsPublished by Elsevier B.V.-
dc.subject.otherBackward reaction-diffusion systems-
dc.subject.otherQuasi-reversibility method-
dc.subject.otherGaussian white noise-
dc.subject.otherWeak solvability-
dc.subject.otherGlobal estimates-
dc.subject.otherConvergence rates-
dc.titleAn improved quasi-reversibility method for a terminal-boundary value multi-species model with white Gaussian noise-
dc.typeJournal Contribution-
dc.identifier.volume384-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notesKhoa, VA (corresponding author), Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA.-
dc.description.notesnhtuan@hcmus.edu.vn; anhkhoa.vo@uncc.edu; khanhvanphan@hcmutedu.vn;-
dc.description.notesvovanau@duytan.edu.vn-
dc.description.otherKhoa, VA (corresponding author), Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA. nhtuan@hcmus.edu.vn; anhkhoa.vo@uncc.edu; khanhvanphan@hcmutedu.vn; vovanau@duytan.edu.vn-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr113176-
dc.identifier.doi10.1016/j.cam.2020.113176-
dc.identifier.isiWOS:000582802400021-
dc.contributor.orcidVo Anh, Khoa/0000-0003-4233-0895-
dc.identifier.eissn1879-1778-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Nguyen Huy Tuan; Phan Thi Khanh Van] Vietnam Natl Univ, Univ Sci, Fac Math & Comp Sci, 227 Nguyen Van Cu,Dist 5, Ho Chi Minh City, Vietnam.-
local.description.affiliation[Vo Anh Khoa] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA.-
local.description.affiliation[Vo Anh Khoa] Hasselt Univ, Fac Sci, Campus Diepenbeek,Agoralaan Bldg D, BE-3590 Diepenbeek, Belgium.-
local.description.affiliation[Phan Thi Khanh Van] Ho Chi Minh City Univ Technol, Fac Appl Sci, Ho Chi Minh City, Vietnam.-
local.description.affiliation[Vo Van Au] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam.-
local.description.affiliation[Vo Van Au] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationNguyen Huy Tuan; ANH-KHOA, Vo; Phan Thi Khanh Van & Vo Van Au (2021) An improved quasi-reversibility method for a terminal-boundary value multi-species model with white Gaussian noise. In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 384 (Art N° 113176).-
item.contributorNguyen Huy Tuan-
item.contributorANH-KHOA, Vo-
item.contributorPhan Thi Khanh Van-
item.contributorVo Van Au-
item.validationecoom 2021-
item.accessRightsOpen Access-
crisitem.journal.issn0377-0427-
crisitem.journal.eissn1879-1778-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0377042720304672-main.pdf
  Restricted Access
Published version624.42 kBAdobe PDFView/Open    Request a copy
ex_article.pdfPeer-reviewed author version689.52 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.