Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/32953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNikolis, Vasileios C.-
dc.contributor.authorDong, Yifan-
dc.contributor.authorKublitski, Jonas-
dc.contributor.authorBenduhn, Johannes-
dc.contributor.authorZheng, Xijia-
dc.contributor.authorHuang, Chengye-
dc.contributor.authorYuzer, A. Celil-
dc.contributor.authorInce, Mine-
dc.contributor.authorSPOLTORE, Donato-
dc.contributor.authorDurrant, James R.-
dc.contributor.authorBakulin, Artem A.-
dc.contributor.authorVANDEWAL, Koen-
dc.date.accessioned2020-12-15T15:19:48Z-
dc.date.available2020-12-15T15:19:48Z-
dc.date.issued2020-
dc.date.submitted2020-12-15T14:25:00Z-
dc.identifier.citationAdvanced Energy Materials, 10(47), (Art N° 2002124)-
dc.identifier.urihttp://hdl.handle.net/1942/32953-
dc.description.abstractEfficient charge generation in organic semiconductors usually requires an interface with an energetic gradient between an electron donor and an electron acceptor in order to dissociate the photogenerated excitons. However, single-component organic solar cells based on chloroboron subnaphthalocyanine (SubNc) have been reported to provide considerable photocurrents despite the absence of an energy gradient at the interface with an acceptor. In this work, it is shown that this is not due to direct free carrier generation upon illumination of SubNc, but due to a field-assisted exciton dissociation mechanism specific to the device configuration. Subsequently, the implications of this effect in bilayer organic solar cells with SubNc as the donor are demonstrated, showing that the external and internal quantum efficiencies in such cells are independent of the donor-acceptor interface energetics. This previously unexplored mechanism results in efficient photocurrent generation even though the driving force is minimized and the open-circuit voltage is maximized.-
dc.description.sponsorshipV.C.N. and Y.D. contributed equally to this work. The authors would like to thank Prof. Dr. Dieter Neher for providing measurement time on the electroluminescence setup of his lab at University of Potsdam. They would also like to acknowledge the Optoelectronics group in the University of Cambridge for sharing the global analysis codes. This work was supported by the German Federal Ministry of Education and Research (BMBF) through the InnoProfile project "Organische p-i-n Bauelemente2.2" (FKZ 03IPT602X). A.A.B. is a Royal Society university research fellow. Open access funding enabled and organized by Projekt DEAL.-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.rights© 2020 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/aenm.202002124. [+]Present address: Heliatek GmbH, Treidlerstraße 3, 01139 Dresden, Germany-
dc.subject.othercharge generation-
dc.subject.otherdriving force-
dc.subject.otherfield&#8208-
dc.subject.otherdependent-
dc.subject.otherorganic solar cells-
dc.subject.otherultrafast spectroscopy-
dc.titleField Effect versus Driving Force: Charge Generation in Small‐Molecule Organic Solar Cells-
dc.typeJournal Contribution-
dc.identifier.issue47-
dc.identifier.volume10-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesNikolis, VC (corresponding author), Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAP, Nothnitzer Str 61, D-01187 Dresden, Germany.; Nikolis, VC (corresponding author), Tech Univ Dresden, Inst Appl Phys, Nothnitzer Str 61, D-01187 Dresden, Germany.; Bakulin, AA (corresponding author), Imperial Coll London, Mol Sci Res Hub, London W12 0BE, England.; Vandewal, K (corresponding author), Hasselt Univ, Inst Mat Res IMO IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.-
dc.description.notesvasileios_christos.nikolis1@tu-dresden.de; a.bakulin@imperial.ac.uk;-
dc.description.noteskoen.vandewal@uhasselt.be-
dc.description.otherNikolis, VC (corresponding author), Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAP, Nothnitzer Str 61, D-01187 Dresden, Germany ; Tech Univ Dresden, Inst Appl Phys, Nothnitzer Str 61, D-01187 Dresden, Germany. Bakulin, AA (corresponding author), Imperial Coll London, Mol Sci Res Hub, London W12 0BE, England. Vandewal, K (corresponding author), Hasselt Univ, Inst Mat Res IMO IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium. vasileios_christos.nikolis1@tu-dresden.de; a.bakulin@imperial.ac.uk; koen.vandewal@uhasselt.be-
local.publisher.placePOSTFACH 101161, 69451 WEINHEIM, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr2002124-
dc.identifier.doi10.1002/aenm.202002124-
dc.identifier.isiWOS:000587432800001-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Nikolis, Vasileios C.; Kublitski, Jonas; Benduhn, Johannes; Spoltore, Donato] Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAP, Nothnitzer Str 61, D-01187 Dresden, Germany.-
local.description.affiliation[Nikolis, Vasileios C.; Kublitski, Jonas; Benduhn, Johannes; Spoltore, Donato] Tech Univ Dresden, Inst Appl Phys, Nothnitzer Str 61, D-01187 Dresden, Germany.-
local.description.affiliation[Dong, Yifan; Zheng, Xijia; Huang, Chengye; Durrant, James R.; Bakulin, Artem A.] Imperial Coll London, Mol Sci Res Hub, London W12 0BE, England.-
local.description.affiliation[Yuzer, A. Celil; Ince, Mine] Tarsus Univ, Fac Technol, Dept Energy Syst Engn, TR-33400 Mersin, Turkey.-
local.description.affiliation[Durrant, James R.] Swansea Univ, Coll Engn, SPECIFIC, Bay Campus, Swansea SA1 8EN, W Glam, Wales.-
local.description.affiliation[Vandewal, Koen] Hasselt Univ, Inst Mat Res IMO IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.-
local.uhasselt.internationalyes-
item.contributorNikolis, Vasileios C.-
item.contributorDong, Yifan-
item.contributorKublitski, Jonas-
item.contributorBenduhn, Johannes-
item.contributorZheng, Xijia-
item.contributorHuang, Chengye-
item.contributorYuzer, A. Celil-
item.contributorInce, Mine-
item.contributorSPOLTORE, Donato-
item.contributorDurrant, James R.-
item.contributorBakulin, Artem A.-
item.contributorVANDEWAL, Koen-
item.fullcitationNikolis, Vasileios C.; Dong, Yifan; Kublitski, Jonas; Benduhn, Johannes; Zheng, Xijia; Huang, Chengye; Yuzer, A. Celil; Ince, Mine; SPOLTORE, Donato; Durrant, James R.; Bakulin, Artem A. & VANDEWAL, Koen (2020) Field Effect versus Driving Force: Charge Generation in Small‐Molecule Organic Solar Cells. In: Advanced Energy Materials, 10(47), (Art N° 2002124).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2021-
crisitem.journal.issn1614-6832-
crisitem.journal.eissn1614-6840-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
aenm.202002124.pdfPublished version1 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

18
checked on May 2, 2024

Page view(s)

28
checked on Sep 6, 2022

Download(s)

10
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.