Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERBEECK, Johan-
dc.contributor.authorDELTUVAITE-THOMAS, Vaiva-
dc.contributor.authorBERCKMOES, Ben-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.contributor.authorAERTS, Marc-
dc.contributor.authorTHAS, Olivier-
dc.contributor.authorBUYSE, Marc-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2021-01-04T10:19:43Z-
dc.date.available2021-01-04T10:19:43Z-
dc.date.issued2021-
dc.date.submitted2021-01-04T10:12:10Z-
dc.identifier.citationStatistical methods in medical research, 30 (3), p. 747-768-
dc.identifier.issn0962-2802-
dc.identifier.urihttp://hdl.handle.net/1942/33025-
dc.description.abstractIn reliability theory, diagnostic accuracy, and clinical trials, the quantity PðX > YÞ þ 1=2PðX ¼ YÞ, also known as the Probabilistic Index (PI), is a common treatment effect measure when comparing two groups of observations. The quantity PðX > YÞ À PðY > XÞ, a linear transformation of PI known as the net benefit, has also been advocated as an intuitively appealing treatment effect measure. Parametric estimation of PI has received a lot of attention in the past 40 years, with the formulation of the Uniformly Minimum-Variance Unbiased Estimator (UMVUE) for many distributions. However, the non-parametric Mann-Whitney estimator of the PI is also known to be UMVUE in some situations. To understand this seeming contradiction, in this paper a systematic comparison is performed between the non-parametric estimator for the PI and parametric UMVUE estimators in various settings. We show that the Mann-Whitney estimator is always an unbiased estimator of the PI with univariate, completely observed data, while the parametric UMVUE is not when the distribution is misspecified. Additionally, the Mann-Whitney estimator is the UMVUE when observations belong to an unrestricted family. When observations come from a more restrictive family of distributions, the loss in efficiency for the non-parametric estimator is limited in realistic clinical scenarios. In conclusion, the Mann-Whitney estimator is simple to use and is a reliable estimator for the PI and net benefit in realistic clinical scenarios.-
dc.description.sponsorshipFunding The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is partly funded by an unrestricted grant provided by the European Cardiovascular Research Institute (ECRI). BB is postdoctoral fellow at the Fund for Scientific Research of Flanders (FWO). Acknowledgements We thank the Pharmacological Therapy for Macular Degeneration Study Group and the company F. Hoffmann LaRoche for granting permission to use the ARMD dataset, a copy of which can be found online (https://ibiostat.be/online-resources) in the datasets2005.zip file.-
dc.language.isoen-
dc.publisherSAGE PUBLICATIONS LTD-
dc.rightsThe Author(s) 2020-
dc.subject.otherCompleteness-
dc.subject.otherrelative efficiency-
dc.subject.othernet benefit-
dc.subject.otherprobabilistic index-
dc.subject.otherUMVUE-
dc.subject.otherunbiased-
dc.subject.otherWilcoxon-Mann-Whitney-
dc.titleUnbiasedness and efficiency of non-parametric and UMVUE estimators of the probabilistic index and related statistics-
dc.typeJournal Contribution-
dc.identifier.epage768-
dc.identifier.issue3-
dc.identifier.spage747-
dc.identifier.volume30-
local.format.pages22-
local.bibliographicCitation.jcatA1-
local.publisher.place1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1177/0962280220966629-
dc.identifier.pmid33256560-
dc.identifier.isi000634854900008-
dc.identifier.eissn1477-0334-
local.provider.typeCrossRef-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.validationecoom 2022-
item.contributorVERBEECK, Johan-
item.contributorDELTUVAITE-THOMAS, Vaiva-
item.contributorBERCKMOES, Ben-
item.contributorBURZYKOWSKI, Tomasz-
item.contributorAERTS, Marc-
item.contributorTHAS, Olivier-
item.contributorBUYSE, Marc-
item.contributorMOLENBERGHS, Geert-
item.fullcitationVERBEECK, Johan; DELTUVAITE-THOMAS, Vaiva; BERCKMOES, Ben; BURZYKOWSKI, Tomasz; AERTS, Marc; THAS, Olivier; BUYSE, Marc & MOLENBERGHS, Geert (2021) Unbiasedness and efficiency of non-parametric and UMVUE estimators of the probabilistic index and related statistics. In: Statistical methods in medical research, 30 (3), p. 747-768.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0962-2802-
crisitem.journal.eissn1477-0334-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
0962280220966629.pdf
  Restricted Access
Published version812.68 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.