Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3303
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLINDSEY, James-
dc.date.accessioned2007-11-27T14:00:33Z-
dc.date.available2007-11-27T14:00:33Z-
dc.date.issued1997-
dc.identifier.citationJOURNAL OF STATISTICAL PLANNING AND INFERENCE, 59(1). p. 167-177-
dc.identifier.issn0378-3758-
dc.identifier.urihttp://hdl.handle.net/1942/3303-
dc.description.abstractConditions are investigated whereby the likelihood function contains all of the relevant information from the data necessary for inference, with no knowledge of the sample design. Certain designs which result in the same reported likelihood for the final stopped experiment in fact have different underlying likelihood functions. For a likelihood function to be valid, it must, at least, contain the minimum information necessary for the experiment to be performable; this is shown to be the minimal filtration of the experiment.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subject.otherBayesian inference; direct likelihood inference; exponential family; frequentist inference; likelihood function; performable experiment; sample design; sequential methods; stopping rule; sufficient statistic-
dc.titleStopping rules and the likelihood function-
dc.typeJournal Contribution-
dc.identifier.epage177-
dc.identifier.issue1-
dc.identifier.spage167-
dc.identifier.volume59-
local.format.pages11-
dc.description.notesLIMBURGS UNIV CTR,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/S0378-3758(96)00096-1-
dc.identifier.isiA1997WP62900012-
item.contributorLINDSEY, James-
item.fullcitationLINDSEY, James (1997) Stopping rules and the likelihood function. In: JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 59(1). p. 167-177.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.