Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33109
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBONNE, Robin-
dc.contributor.authorHOU, Ji-Ling-
dc.contributor.authorHUSTINGS, Jeroen-
dc.contributor.authorWOUTERS, Koen-
dc.contributor.authorMeert, Mathijs-
dc.contributor.authorHidalgo-Martinez, Silvia-
dc.contributor.authorCORNELISSEN, Rob-
dc.contributor.authorMORINI, Filippo-
dc.contributor.authorTHIJS, Sofie-
dc.contributor.authorVANGRONSVELD, Jaco-
dc.contributor.authorVALCKE, Roland-
dc.contributor.authorCLEUREN, Bart-
dc.contributor.authorMeysman, Filip J. R.-
dc.contributor.authorMANCA, Jean-
dc.date.accessioned2021-01-19T07:59:00Z-
dc.date.available2021-01-19T07:59:00Z-
dc.date.issued2020-
dc.date.submitted2021-01-13T13:57:25Z-
dc.identifier.citationScientific Reports, 10 (1) (Art N° 19798)-
dc.identifier.urihttp://hdl.handle.net/1942/33109-
dc.description.abstractFilamentous cable bacteria exhibit long-range electron transport over centimetre-scale distances, which takes place in a parallel fibre structure with high electrical conductivity. Still, the underlying electron transport mechanism remains undisclosed. Here we determine the intrinsic electrical properties of the conductive fibres in cable bacteria from a material science perspective. Impedance spectroscopy provides an equivalent electrical circuit model, which demonstrates that dry cable bacteria filaments function as resistive biological wires. Temperature-dependent electrical characterization reveals that the conductivity can be described with an Arrhenius-type relation over a broad temperature range (- 195 degrees C to+50 degrees C), demonstrating that charge transport is thermally activated with a low activation energy of 40-50 meV. Furthermore, when cable bacterium filaments are utilized as the channel in a field-effect transistor, they show n-type transport suggesting that electrons are the charge carriers. Electron mobility values are similar to 0.1 cm(2)/Vs at room temperature and display a similar Arrhenius temperature dependence as conductivity. Overall, our results demonstrate that the intrinsic electrical properties of the conductive fibres in cable bacteria are comparable to synthetic organic semiconductor materials, and so they offer promising perspectives for both fundamental studies of biological electron transport as well as applications in microbial electrochemical technologies and bioelectronics.-
dc.description.sponsorshipThe authors thank the colleagues from X-LAB from Hasselt University and the Microbial Electricity team from the University of Antwerp for discussions and feedback. Special thanks to K. Ceyssens and T. Custers for the graphics in Fig. 1A; R. Lempens and M. De Roeve for help with the experimental set-up; J. D'Haen for SEM imaging (Fig. 1B). Graphics for Fig. 1C,D and Fig. 3A were made by RB with Adobe illustrator. This research was financially supported by the Research Foundation-Flanders (FWO project grant G031416N to FJRM and JM and FWO aspirant grant 1180517N to RB). FJRM was additionally supported by the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072).-
dc.language.isoen-
dc.publisherNATURE RESEARCH-
dc.rightsOpen Access Tis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.-
dc.titleIntrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.volume10-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesManca, JV (corresponding author), Hasselt Univ, X Lab, Agoralaan D, B-3590 Diepenbeek, Belgium.-
dc.description.notesjean.manca@uhasselt.be-
dc.description.otherManca, JV (corresponding author), Hasselt Univ, X Lab, Agoralaan D, B-3590 Diepenbeek, Belgium. jean.manca@uhasselt.be-
local.publisher.placeHEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr19798-
dc.identifier.doi10.1038/s41598-020-76671-5-
dc.identifier.isiWOS:000594647800006-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Bonne, Robin; Hou, Ji-Ling; Hustings, Jeroen; Wouters, Koen; Meert, Mathijs; Cornelissen, Rob; Morini, Filippo; Manca, Jean, V] Hasselt Univ, X Lab, Agoralaan D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Hidalgo-Martinez, Silvia; Meysman, Filip J. R.] Univ Antwerp, Dept Biol, Univ Pl 1, B-2610 Antwerp, Belgium.-
local.description.affiliation[Thijs, Sofie; Vangronsveld, Jaco] Hasselt Univ, Ctr Environm Sci, Agoralaan D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Vangronsveld, Jaco] Marie Curie Sklodowska Univ, Fac Biol & Biotechnol, Dept Plant Physiol, Plac Marii Skfodowskiej Curie 5, PL-20400 Lublin, Poland.-
local.description.affiliation[Valcke, Roland] Hasselt Univ, Mol & Phys Plant Physiol, Agoralaan D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Cleuren, Bart] Hasselt Univ, Theory Lab, Agoralaan D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Meysman, Filip J. R.] Delft Univ Technol, Dept Biotechnol, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands.-
local.uhasselt.internationalyes-
item.contributorBONNE, Robin-
item.contributorHOU, Ji-Ling-
item.contributorHUSTINGS, Jeroen-
item.contributorWOUTERS, Koen-
item.contributorMeert, Mathijs-
item.contributorHidalgo-Martinez, Silvia-
item.contributorCORNELISSEN, Rob-
item.contributorMORINI, Filippo-
item.contributorTHIJS, Sofie-
item.contributorVANGRONSVELD, Jaco-
item.contributorVALCKE, Roland-
item.contributorCLEUREN, Bart-
item.contributorMeysman, Filip J. R.-
item.contributorMANCA, Jean-
item.validationecoom 2021-
item.fullcitationBONNE, Robin; HOU, Ji-Ling; HUSTINGS, Jeroen; WOUTERS, Koen; Meert, Mathijs; Hidalgo-Martinez, Silvia; CORNELISSEN, Rob; MORINI, Filippo; THIJS, Sofie; VANGRONSVELD, Jaco; VALCKE, Roland; CLEUREN, Bart; Meysman, Filip J. R. & MANCA, Jean (2020) Intrinsic electrical properties of cable bacteria reveal an Arrhenius temperature dependence. In: Scientific Reports, 10 (1) (Art N° 19798).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn2045-2322-
crisitem.journal.eissn2045-2322-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
s41598-020-76671-5.pdfPublished version1.36 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

10
checked on Apr 23, 2024

Page view(s)

96
checked on May 24, 2022

Download(s)

46
checked on May 24, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.