Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3318
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN GASTEL, Martine-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-27T14:17:26Z-
dc.date.available2007-11-27T14:17:26Z-
dc.date.issued1997-
dc.identifier.citationJOURNAL OF ALGEBRA, 196(1). p. 251-282-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/1942/3318-
dc.description.abstractLet A be a three dimensional Artin-Schelter regular algebra. We give a description of the category of finitely generated A-modules of Gelfand-Kirillov dimension one (module those of finite dimension over the ground field). The proof is based upon a result by Gabriel which says that locally finite categories can be described by module categories over topological rings.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS-
dc.titleGraded modules of Gelfand-Kirillov dimension one over three-dimensional Artin-Schelter regular algebras-
dc.typeJournal Contribution-
dc.identifier.epage282-
dc.identifier.issue1-
dc.identifier.spage251-
dc.identifier.volume196-
local.format.pages32-
dc.description.notesVanGastel, M, LIMBURGS UNIV CTR,DEPT WNI,UNIV CAMPUS,BLDG D,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1006/jabr.1997.7072-
dc.identifier.isiA1997YB13400009-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.fullcitationVAN GASTEL, Martine & VAN DEN BERGH, Michel (1997) Graded modules of Gelfand-Kirillov dimension one over three-dimensional Artin-Schelter regular algebras. In: JOURNAL OF ALGEBRA, 196(1). p. 251-282.-
item.contributorVAN GASTEL, Martine-
item.contributorVAN DEN BERGH, Michel-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

15
checked on Oct 5, 2025

WEB OF SCIENCETM
Citations

16
checked on Oct 11, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.