Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/3318
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | VAN GASTEL, Martine | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2007-11-27T14:17:26Z | - |
dc.date.available | 2007-11-27T14:17:26Z | - |
dc.date.issued | 1997 | - |
dc.identifier.citation | JOURNAL OF ALGEBRA, 196(1). p. 251-282 | - |
dc.identifier.issn | 0021-8693 | - |
dc.identifier.uri | http://hdl.handle.net/1942/3318 | - |
dc.description.abstract | Let A be a three dimensional Artin-Schelter regular algebra. We give a description of the category of finitely generated A-modules of Gelfand-Kirillov dimension one (module those of finite dimension over the ground field). The proof is based upon a result by Gabriel which says that locally finite categories can be described by module categories over topological rings. | - |
dc.language.iso | en | - |
dc.publisher | ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS | - |
dc.title | Graded modules of Gelfand-Kirillov dimension one over three-dimensional Artin-Schelter regular algebras | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 282 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 251 | - |
dc.identifier.volume | 196 | - |
local.format.pages | 32 | - |
dc.description.notes | VanGastel, M, LIMBURGS UNIV CTR,DEPT WNI,UNIV CAMPUS,BLDG D,B-3590 DIEPENBEEK,BELGIUM. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1006/jabr.1997.7072 | - |
dc.identifier.isi | A1997YB13400009 | - |
item.fulltext | No Fulltext | - |
item.contributor | VAN GASTEL, Martine | - |
item.contributor | VAN DEN BERGH, Michel | - |
item.fullcitation | VAN GASTEL, Martine & VAN DEN BERGH, Michel (1997) Graded modules of Gelfand-Kirillov dimension one over three-dimensional Artin-Schelter regular algebras. In: JOURNAL OF ALGEBRA, 196(1). p. 251-282. | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.