Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33197
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOUDEBROUCKX, Gilles-
dc.contributor.authorVANDENRYT, Thijs-
dc.contributor.authorBORMANS, Seppe-
dc.contributor.authorWAGNER, Patrick-
dc.contributor.authorTHOELEN, Ronald-
dc.date.accessioned2021-01-28T09:12:43Z-
dc.date.available2021-01-28T09:12:43Z-
dc.date.issued2021-
dc.date.submitted2021-01-26T08:25:35Z-
dc.identifier.citationIEEE sensors journal, 21 (6), p. 7298-7307.-
dc.identifier.issn1530-437X-
dc.identifier.urihttp://hdl.handle.net/1942/33197-
dc.description.abstractMeasurements of thermal conductivity on microliter-sized samples can be of great value in applications where the sample fluid is costly or scarcely available. Such measurements can be used for a broad range of purposes such as quality control and bioanalytical applications. Currently available methods for measuring the thermal conductivity of small liquid samples are often not suited for high-throughput testing due to the complexity of the sensor hardware, or the complexity of the required data processing. In this study, a novel sensor device and sensing method are presented that require only one simple planar resistive sensing structure to be incorporated in a microchannel. The working principle of the so-called Transient Thermal Offset (TTO) method is demonstrated with numerical simulations, as well as by practical experiments on various water/ethanol mixtures using an in-house designed prototype sensor device. The developed device is able to determine the thermal conductivity of water/ethanol mixtures with volumes less than 3 µl with an accuracy of 0.5%. The standard deviation on the experimental measurements is less than 0.009 W/mK. The setup enables rapid testing of small amounts of static liquid samples at high-throughput, as well as long-time monitoring of changes in thermal conductivity of liquids inside a microchannel. The purposeful sensor design enables further miniaturization that would allow testing even smaller sample volumes.-
dc.description.sponsorshipThe authors would like to thank Prof. Michael Daenen and Philippe Nivelle for the stimulating discussions, and Makerspace PXL/UHasselt for the technical support.-
dc.language.isoen-
dc.publisher-
dc.rights2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.-
dc.subject.otherIndex Terms-Microfluidic device-
dc.subject.othersensor-
dc.subject.otherthermal conductivity-
dc.subject.othertransient method-
dc.titleMeasuring Thermal Conductivity in a Microfluidic Device with the Transient Thermal Offset (TTO) Method-
dc.typeJournal Contribution-
dc.identifier.epage7307-
dc.identifier.issue6-
dc.identifier.spage7298-
dc.identifier.volume21-
local.format.pages10-
local.bibliographicCitation.jcatA1-
local.publisher.place445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1109/JSEN.2020.3047475-
dc.identifier.isiWOS:000636053600018-
dc.identifier.eissn1558-1748-
local.provider.typeCrossRef-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.validationecoom 2022-
item.contributorOUDEBROUCKX, Gilles-
item.contributorVANDENRYT, Thijs-
item.contributorBORMANS, Seppe-
item.contributorWAGNER, Patrick-
item.contributorTHOELEN, Ronald-
item.fullcitationOUDEBROUCKX, Gilles; VANDENRYT, Thijs; BORMANS, Seppe; WAGNER, Patrick & THOELEN, Ronald (2021) Measuring Thermal Conductivity in a Microfluidic Device with the Transient Thermal Offset (TTO) Method. In: IEEE sensors journal, 21 (6), p. 7298-7307..-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn1530-437X-
crisitem.journal.eissn1558-1748-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
09308985.pdf
  Restricted Access
Published version12.18 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.