Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33197
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOUDEBROUCKX, Gilles-
dc.contributor.authorVANDENRYT, Thijs-
dc.contributor.authorBORMANS, Seppe-
dc.contributor.authorWAGNER, Patrick-
dc.contributor.authorTHOELEN, Ronald-
dc.date.accessioned2021-01-28T09:12:43Z-
dc.date.available2021-01-28T09:12:43Z-
dc.date.issued2020-
dc.date.submitted2021-01-26T08:25:35Z-
dc.identifier.citationIEEE SENSORS JOURNAL, 21(6), p. 7298-7307.-
dc.identifier.issn1530-437X-
dc.identifier.urihttp://hdl.handle.net/1942/33197-
dc.description.abstractMeasurements of thermal conductivity on microliter-sized samples can be of great value in applications where the sample fluid is costly or scarcely available. Such measurements can be used for a broad range of purposes such as quality control and bioanalytical applications. Currently available methods for measuring the thermal conductivity of small liquid samples are often not suited for high-throughput testing due to the complexity of the sensor hardware, or the complexity of the required data processing. In this study, a novel sensor device and sensing method are presented that require only one simple planar resistive sensing structure to be incorporated in a microchannel. The working principle of the so-called Transient Thermal Offset (TTO) method is demonstrated with numerical simulations, as well as by practical experiments on various water/ethanol mixtures using an in-house designed prototype sensor device. The developed device is able to determine the thermal conductivity of water/ethanol mixtures with volumes less than 3 µl with an accuracy of 0.5%. The standard deviation on the experimental measurements is less than 0.009 W/mK. The setup enables rapid testing of small amounts of static liquid samples at high-throughput, as well as long-time monitoring of changes in thermal conductivity of liquids inside a microchannel. The purposeful sensor design enables further miniaturization that would allow testing even smaller sample volumes.-
dc.language.isoen-
dc.publisher-
dc.subject.otherIndex Terms-Microfluidic device-
dc.subject.othersensor-
dc.subject.otherthermal conductivity-
dc.subject.othertransient method-
dc.titleMeasuring Thermal Conductivity in a Microfluidic Device with the Transient Thermal Offset (TTO) Method-
dc.typeJournal Contribution-
dc.identifier.epage7307-
dc.identifier.issue6-
dc.identifier.spage7298-
dc.identifier.volume21-
local.format.pages10-
local.bibliographicCitation.jcatA1-
local.publisher.place445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1109/JSEN.2020.3047475-
dc.identifier.isiWOS:000636053600018-
dc.identifier.eissn1558-1748-
local.provider.typeCrossRef-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.accessRightsRestricted Access-
item.validationecoom 2022-
item.fulltextWith Fulltext-
item.fullcitationOUDEBROUCKX, Gilles; VANDENRYT, Thijs; BORMANS, Seppe; WAGNER, Patrick & THOELEN, Ronald (2020) Measuring Thermal Conductivity in a Microfluidic Device with the Transient Thermal Offset (TTO) Method. In: IEEE SENSORS JOURNAL, 21(6), p. 7298-7307..-
item.contributorOUDEBROUCKX, Gilles-
item.contributorVANDENRYT, Thijs-
item.contributorBORMANS, Seppe-
item.contributorWAGNER, Patrick-
item.contributorTHOELEN, Ronald-
crisitem.journal.issn1530-437X-
crisitem.journal.eissn1558-1748-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
09308985.pdf
  Restricted Access
Published version12.18 MBAdobe PDFView/Open    Request a copy
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Apr 24, 2024

Page view(s)

54
checked on Sep 5, 2022

Download(s)

14
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.