Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33404
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIdris, Muhammad-
dc.contributor.authorUgarte, Martín-
dc.contributor.authorVANSUMMEREN, Stijn-
dc.date.accessioned2021-02-11T14:39:21Z-
dc.date.available2021-02-11T14:39:21Z-
dc.date.issued2017-
dc.date.submitted2021-02-11T12:52:28Z-
dc.identifier.citationProceedings of the 2017 ACM International Conference on Management of Data, Association for Computing Machinery, p. 1259 -1274-
dc.identifier.isbn9781450341974-
dc.identifier.urihttp://hdl.handle.net/1942/33404-
dc.description.abstractModern computing tasks such as real-time analytics require refresh of query results under high update rates. Incremental View Maintenance (IVM) approaches this problem by materializing results in order to avoid recomputation. IVM naturally induces a trade-off between the space needed to maintain the materialized results and the time used to process updates. In this paper, we show that the full materialization of results is a barrier for more general optimization strategies. In particular, we present a new approach for evaluating queries under updates. Instead of the materialization of results, we require a data structure that allows: (1) linear time maintenance under updates, (2) constant-delay enumeration of the output, (3) constant-time lookups in the output, while (4) using only linear space in the size of the database. We call such a structure a Dynamic Constant-delay Linear Representation (DCLR) for the query. We show that DYN, a dynamic version of the Yannakakis algorithm, yields DCLRs for the class of free-connex acyclic CQs. We show that this is optimal in the sense that no DCLR can exist for CQs that are not free-connex acyclic. Moreover, we identify a sub-class of queries for which DYN features constant-time update per tuple and show that this class is maximal. Finally, using the TPC-H and TPC-DS benchmarks, we experimentally compare DYN and a higher-order IVM (HIVM) engine. Our approach is not only more efficient in terms of memory consumption (as expected), but is also consistently faster in processing updates.-
dc.language.isoen-
dc.publisherAssociation for Computing Machinery-
dc.subject.otherIncremental View Maintenance-
dc.subject.otherDynamic query processing-
dc.subject.otherAcyclic joins-
dc.titleThe Dynamic Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateMAY 14-19, 2017-
local.bibliographicCitation.conferencenameSIGMOD: International Conference on Management of Data-
local.bibliographicCitation.conferenceplaceChicago, IL-
dc.identifier.epage1274-
dc.identifier.spage1259-
local.bibliographicCitation.jcatC1-
local.publisher.place1515 BROADWAY, NEW YORK, NY 10036-9998 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1145/3035918.3064027-
dc.identifier.isiWOS:000452550000084-
local.provider.typeWeb of Science-
local.bibliographicCitation.btitleProceedings of the 2017 ACM International Conference on Management of Data-
local.uhasselt.uhpubno-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorIdris, Muhammad-
item.contributorUgarte, Martín-
item.contributorVANSUMMEREN, Stijn-
item.fullcitationIdris, Muhammad; Ugarte, Martín & VANSUMMEREN, Stijn (2017) The Dynamic Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates. In: Proceedings of the 2017 ACM International Conference on Management of Data, Association for Computing Machinery, p. 1259 -1274.-
item.accessRightsRestricted Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
main.pdf
  Restricted Access
Published version618.47 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.