Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHannula, Miika-
dc.contributor.authorKontinen, Juha-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.contributor.authorVIRTEMA, Jonni-
dc.date.accessioned2021-02-12T11:43:19Z-
dc.date.available2021-02-12T11:43:19Z-
dc.date.issued2020-
dc.date.submitted2021-02-11T17:41:21Z-
dc.identifier.citationLICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Assoc Computing Machinery, p. 550 -563-
dc.identifier.isbn978-1-4503-7104-9-
dc.identifier.urihttp://hdl.handle.net/1942/33433-
dc.description.abstractWe introduce a novel variant of BSS machines called Separate Branching BSS machines (S-BSS in short) and develop a Fagin-type logical characterisation for languages decidable in nondeterministic polynomial time by S-BSS machines. We show that NP on S-BSS machines is strictly included in NP on BSS machines and that every NP language on S-BSS machines is a countable disjoint union of closed sets in the usual topology of R n. Moreover, we establish that on Boolean inputs NP on S-BSS machines without real constants char-acterises a natural fragment of the complexity class ∃R (a class of problems polynomial time reducible to the true ex-istential theory of the reals) and hence lies between NP and PSPACE. Finally we apply our results to determine the data complexity of probabilistic independence logic. CCS Concepts: • Theory of computation → Complexity theory and logic; Finite Model Theory; Models of computation; • Mathematics of computing → Probability and statistics.-
dc.language.isoen-
dc.publisherASSOC COMPUTING MACHINERY-
dc.rights© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM-
dc.subject.otherBlum-Shub-Smale machines-
dc.subject.otherdescriptive complex- ity-
dc.subject.otherteam semantics-
dc.subject.otherindependence logic-
dc.subject.otherreal arithmetic-
dc.titleDescriptive complexity of real computation and probabilistic independence logic-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedatejuly 2020-
local.bibliographicCitation.conferencename35th Annual ACM/IEEE Symposium on Logic in Computer Science-
local.bibliographicCitation.conferenceplaceonline-
dc.identifier.epage563-
dc.identifier.spage550-
local.format.pages14-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1145/3373718.3394773-
dc.identifier.isi000665014900043-
local.provider.typePdf-
local.bibliographicCitation.btitleLICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2022-
item.contributorHannula, Miika-
item.contributorKontinen, Juha-
item.contributorVAN DEN BUSSCHE, Jan-
item.contributorVIRTEMA, Jonni-
item.fullcitationHannula, Miika; Kontinen, Juha; VAN DEN BUSSCHE, Jan & VIRTEMA, Jonni (2020) Descriptive complexity of real computation and probabilistic independence logic. In: LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Assoc Computing Machinery, p. 550 -563.-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
3373718.3394773.pdf
  Restricted Access
Published version722.34 kBAdobe PDFView/Open    Request a copy
2003.00644.pdfPeer-reviewed author version324.82 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

19
checked on Sep 30, 2025

WEB OF SCIENCETM
Citations

12
checked on Oct 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.