Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNadal, Sergi-
dc.contributor.authorRomero, Oscar-
dc.contributor.authorAbelló, Alberto-
dc.contributor.authorVassiliadis, Panos-
dc.contributor.authorVANSUMMEREN, Stijn-
dc.date.accessioned2021-02-12T12:06:25Z-
dc.date.available2021-02-12T12:06:25Z-
dc.date.issued2019-
dc.date.submitted2021-02-11T18:59:23Z-
dc.identifier.citationINFORMATION SYSTEMS, 79 , p. 3 -19-
dc.identifier.urihttp://hdl.handle.net/1942/33438-
dc.description.abstractBig Data architectures allow to flexibly store and process heterogeneous data, from multiple sources, in their original format. The structure of those data, commonly supplied by means of REST APIs, is continuously evolving. Thus data analysts need to adapt their analytical processes after each API release. This gets more challenging when performing an integrated or historical analysis. To cope with such complexity, in this paper, we present the Big Data Integration ontology, the core construct to govern the data integration process under schema evolution by systematically annotating it with information regarding the schema of the sources. We present a query rewriting algorithm that, using the annotated ontology, converts queries posed over the ontology to queries over the sources. To cope with syntactic evolution in the sources, we present an algorithm that semi-automatically adapts the ontology upon new releases. This guarantees ontology-mediated queries to correctly retrieve data from the most recent schema version as well as correctness in historical queries. A functional and performance evaluation on real-world APIs is performed to validate our approach. (C) 2018 Elsevier Ltd. All rights reserved.-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subject.otherData integration-
dc.subject.otherEvolution-
dc.subject.otherSemantic web-
dc.titleAn integration-oriented ontology to govern evolution in Big Data ecosystems-
dc.typeJournal Contribution-
dc.identifier.epage19-
dc.identifier.spage3-
dc.identifier.volume79-
local.bibliographicCitation.jcatA1-
local.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.classdsPublValOverrule/no_publishing_delay-
dc.identifier.doi10.1016/j.is.2018.01.006-
dc.identifier.isiWOS:000451653600002-
local.provider.typeWeb of Science-
local.uhasselt.uhpubno-
local.uhasselt.internationalyes-
item.fulltextNo Fulltext-
item.contributorNadal, Sergi-
item.contributorRomero, Oscar-
item.contributorAbelló, Alberto-
item.contributorVassiliadis, Panos-
item.contributorVANSUMMEREN, Stijn-
item.fullcitationNadal, Sergi; Romero, Oscar; Abelló, Alberto; Vassiliadis, Panos & VANSUMMEREN, Stijn (2019) An integration-oriented ontology to govern evolution in Big Data ecosystems. In: INFORMATION SYSTEMS, 79 , p. 3 -19.-
item.accessRightsClosed Access-
crisitem.journal.issn0306-4379-
crisitem.journal.eissn1873-6076-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.