Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3364
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUMORTIER, Freddy-
dc.contributor.authorLi, CZ-
dc.date.accessioned2007-11-28T08:06:49Z-
dc.date.available2007-11-28T08:06:49Z-
dc.date.issued1996-
dc.identifier.citationNONLINEARITY, 9(6). p. 1489-1500-
dc.identifier.issn0951-7715-
dc.identifier.urihttp://hdl.handle.net/1942/3364-
dc.description.abstractIn this paper we prove a theorem on the uniqueness of limit cycles surrounding one or more singularities for Lienard equations. By using this theorem we give a positive answer to the conjecture in Dumortier and Rousseau (1990 Nonlinearity 3 1015-39), completing the classification of the cubic Lienard equations with linear damping. It also finishes the study of the generic three-parameter unfoldings of the nilpotent focus in the plane.-
dc.language.isoen-
dc.publisherIOP PUBLISHING LTD-
dc.titleOn the uniqueness of limit cycles surrounding one or more singularities for Lienard equations-
dc.typeJournal Contribution-
dc.identifier.epage1500-
dc.identifier.issue6-
dc.identifier.spage1489-
dc.identifier.volume9-
local.format.pages12-
dc.description.notesBEIJING UNIV,DEPT MATH,BEIJING 100871,PEOPLES R CHINA. BEIJING UNIV,INST MATH,BEIJING 100871,PEOPLES R CHINA.Dumortier, F, LIMBURGS UNIV CTR,UNIV CAMPUS,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1088/0951-7715/9/6/006-
dc.identifier.isiA1996VW58500006-
item.contributorDUMORTIER, Freddy-
item.contributorLi, CZ-
item.fullcitationDUMORTIER, Freddy & Li, CZ (1996) On the uniqueness of limit cycles surrounding one or more singularities for Lienard equations. In: NONLINEARITY, 9(6). p. 1489-1500.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.