Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33862
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoogaerts, T-
dc.contributor.authorTranchevent, LC-
dc.contributor.authorPavlopoulos, GA-
dc.contributor.authorAERTS, Jan-
dc.contributor.authorVandewalle, J-
dc.date.accessioned2021-04-06T13:23:33Z-
dc.date.available2021-04-06T13:23:33Z-
dc.date.issued2012-
dc.date.submitted2021-03-29T09:14:20Z-
dc.identifier.citationIEEE 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS & BIOENGINEERING, IEEE, p. 52 -57-
dc.identifier.isbn978-1-4673-4358-9-
dc.identifier.isbn978-1-4673-4357-2-
dc.identifier.isbn978-1-4673-4356-5-
dc.identifier.issn2471-7819-
dc.identifier.urihttp://hdl.handle.net/1942/33862-
dc.description.abstractIn this paper, we introduce a visualization tool for interactive and efficient exploration of high dimensional data using parallel coordinates. An algorithm is developed to find an optimal permutation of dimensions, which allows the data miner to immediately see the most important features or irregularities in the dataset. This is implemented as a genetic algorithm based on the travelling salesman problem using maximal correlation as fitness. Other features of the tool include selection operators to group the data such as selection by intersection or by angle, orthogonal and density plots complementing the parallel coordinates plot, manual arrangement of permutation order of the dimensions, possibility to show all plots necessary to see all dimensional relations and displaying a certain number of standard deviations for each dimension separately. The tool is applied to multiple gene prioritization cases in search of genes that are relevant to certain genetic disorders. The used datasets are obtained with the MerKator and Endeavour tools and include a Breast cancer, Cataract, Charcoth-Marie-Tooth and Cardiomyopathy dataset, as well as a dataset relating 29 diseases with 22206 genes. Our tool, manual and data can be downloaded from http://www.toomas.be/parcoord/.-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesIEEE International Conference on Bioinformatics and Bioengineering-
dc.subject.otherdata visualization-
dc.subject.otherparallel coordinates-
dc.subject.othergenetic algorithm-
dc.subject.othergene prioritization-
dc.titleVisualizing High Dimensional Datasets Using Parallel Coordinates: Application to Gene Prioritization-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateNOV 11-13, 2012-
local.bibliographicCitation.conferencename12th IEEE International Conference on BioInformatics and BioEngineering (BIBE)-
local.bibliographicCitation.conferenceplaceLarnaca, CYPRUS-
dc.identifier.epage57-
dc.identifier.spage52-
local.bibliographicCitation.jcatC1-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.isiWOS:000315332900015-
local.provider.typeWeb of Science-
local.bibliographicCitation.btitleIEEE 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS & BIOENGINEERING-
local.uhasselt.uhpubno-
item.contributorBoogaerts, T-
item.contributorTranchevent, LC-
item.contributorPavlopoulos, GA-
item.contributorAERTS, Jan-
item.contributorVandewalle, J-
item.fullcitationBoogaerts, T; Tranchevent, LC; Pavlopoulos, GA; AERTS, Jan & Vandewalle, J (2012) Visualizing High Dimensional Datasets Using Parallel Coordinates: Application to Gene Prioritization. In: IEEE 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS & BIOENGINEERING, IEEE, p. 52 -57.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.