Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33877
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHUZAK, Renato-
dc.contributor.authorCRNKOVIC, Vlatko-
dc.contributor.authorVlah, Domagoj-
dc.date.accessioned2021-04-07T13:03:05Z-
dc.date.available2021-04-07T13:03:05Z-
dc.date.issued2021-
dc.date.submitted2021-04-06T13:24:33Z-
dc.identifier.citationJournal of Mathematical Analysis and Applications, 501 (2) (Art N° 125212)-
dc.identifier.issn0022-247X-
dc.identifier.urihttp://hdl.handle.net/1942/33877-
dc.description.abstractIn our paper we present a fractal analysis of canard cycles and slow-fast Hopf points in 2-dimensional singular perturbation problems under very general conditions. Our focus is on the orientable case (e.g. R 2) and the non-orientable case (e.g. the Möbius band). Given a slow-fast system, we generate a sequence of real numbers using the so-called slow relation function and compute a fractal dimension of that sequence. Then the value of the fractal dimension enables us to determine the cyclicity and bifurcations of canard cycles in the slow-fast system. We compute the fractal dimension of a slow-fast Hopf point depending on its codimension. Our focus is on the box dimension, one-sided dimensions and the fractal zeta-function. We also find explicit fractal formulas of Cahen-type for the computation of the above fractal dimensions and use them to detect numerically the number of canard limit cycles.-
dc.description.sponsorshipThis research was supported by Croatian Science Foundation (HRZZ) Grant PZS-2019-02-3055 from “Research Cooperability” program funded by the European Social Fund-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.rights2021 Elsevier Inc. All rights reserved.-
dc.subject.otherslow-fast systems-
dc.subject.otherslow relation function-
dc.subject.otherbox dimension-
dc.subject.otherfractal zeta function-
dc.subject.otherslow-fast Hopf point-
dc.titleFractal dimensions and two-dimensional slow-fast systems-
dc.typeJournal Contribution-
dc.identifier.issue2-
dc.identifier.volume501-
local.format.pages21-
local.bibliographicCitation.jcatA1-
local.publisher.place525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr125212-
dc.identifier.doi10.1016/j.jmaa.2021.125212-
dc.identifier.isi000653644000026-
dc.identifier.eissn1096-0813-
local.provider.typePdf-
local.uhasselt.uhpubyes-
local.dataset.doihttps://doi.org/10.1016/j.jmaa.2021.125212-
local.uhasselt.internationalyes-
item.contributorHUZAK, Renato-
item.contributorCRNKOVIC, Vlatko-
item.contributorVlah, Domagoj-
item.fullcitationHUZAK, Renato; CRNKOVIC, Vlatko & Vlah, Domagoj (2021) Fractal dimensions and two-dimensional slow-fast systems. In: Journal of Mathematical Analysis and Applications, 501 (2) (Art N° 125212).-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2022-
crisitem.journal.issn0022-247X-
crisitem.journal.eissn1096-0813-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
FractalDimensions.pdfPeer-reviewed author version741.63 kBAdobe PDFView/Open
Fractal dimensions and two-dimensional slow-fast systems.pdf
  Restricted Access
Published version921.09 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.