Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/338
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLipsitz, Stuart R.-
dc.contributor.authorParzen, Michael-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2004-10-22T14:41:50Z-
dc.date.available2004-10-22T14:41:50Z-
dc.date.issued1998-
dc.identifier.citationJournal of Computational and Graphical Statistics, 7(3). p. 356-376-
dc.identifier.urihttp://hdl.handle.net/1942/338-
dc.description.abstractThis article describes estimation of the cell probabilities in an R x C contingency table with ignorable missing data. Popular methods for maximizing the incomplete data likelihood are the EM-algorithm and the Newton--Raphson algorithm. Both of these methods require some modification of existing statistical software to get the MLEs of the cell probabilities as well as the variance estimates. We make the connection between the multinomial and Poisson likelihoods to show that the MLEs can be obtained in any generalized linear models program without additional programming or iteration loops.-
dc.description.sponsorshipWe are very grateful for the support provided by grants CA 57253 and CA 55576 from the NIH (U.S.A.)-
dc.language.isoen-
dc.rights(c) 1998 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America-
dc.subjectCategorical data-
dc.subjectMissing data-
dc.subject.otherEM-algorithm; ignorable missing data; Newton-Raphson algorithm; offset-
dc.titleObtaining the maximum likelihood estimates in incomplete R x C contingency tables using a Poisson generalized linear model-
dc.typeJournal Contribution-
dc.identifier.epage376-
dc.identifier.issue3-
dc.identifier.spage356-
dc.identifier.volume7-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
local.classdsPublValOverrule/author_version_not_expected-
dc.identifier.doi10.2307/1390709-
dc.identifier.isi000076008800007-
item.fulltextWith Fulltext-
item.fullcitationLipsitz, Stuart R.; Parzen, Michael & MOLENBERGHS, Geert (1998) Obtaining the maximum likelihood estimates in incomplete R x C contingency tables using a Poisson generalized linear model. In: Journal of Computational and Graphical Statistics, 7(3). p. 356-376.-
item.contributorLipsitz, Stuart R.-
item.contributorParzen, Michael-
item.contributorMOLENBERGHS, Geert-
item.validationecoom 1999-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
lipsitz.pdfPublished version99.06 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.