Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/33906
Title: Child buccal telomere length and mitochondrial DNA content as biomolecular markers of ageing in association with air pollution
Authors: HAUTEKIET, Pauline 
NAWROT, Tim 
JANSSEN, Bram 
MARTENS, Dries 
De Clercq, Eva M.
Dadvand, Payam
PLUSQUIN, Michelle 
BIJNENS, Esmee 
SAENEN, Nelly 
Issue Date: 2021
Publisher: PERGAMON-ELSEVIER SCIENCE LTD
Source: ENVIRONMENT INTERNATIONAL, 147 (Art N° 106332)
Abstract: Background: Pro-inflammatory conditions such as air pollution might induce biological ageing. However, the available evidence on such an impact in children is still very scarce. We studied in primary schoolchildren the association of ambient residential air pollution exposure with telomere length (TL) and mitochondrial DNA content (mtDNAc), two important targets of the core axis of ageing. Methods: Between 2012 and 2014, buccal TL and mtDNAc were repeatedly assessed using qPCR in 197 Belgian primary schoolchildren (mean age 10.3 years) as part of the COGNAC study. At the child's residence, recent (week), sub-chronic (month) and chronic (year) exposure to nitrogen dioxide (NO2), particulate matter <= 2.5 mu m (PM2.5) and black carbon (BC) were estimated using a high resolution spatiotemporal model. A mixed-effects model with school and subject as random effect was used while adjusting for a priori chosen covariates. Results: An interquartile range (IQR) increment (1.9 mu g/m(3)) in chronic PM2.5 exposure was associated with a 8.9% (95% CI: -15.4 to -1.9%) shorter TL. In contrast to PM2.5, chronic exposure to BC and NO2 was not associated with TL but recent exposure to BC and NO2 showed significant inverse associations with TL: an IQR increment in recent exposure to BC (0.9 mu g/m(3)) and NO2 (10.2 mu g/m(3)) was associated with a 6.2% (95% CI: -10.6 to -1.6%) and 6.4% (95% CI: -11.8 to -0.7%) shorter TL, respectively. Finally, an IQR increment in chronic PM2.5 exposure was associated with a 12.7% (95% CI: 21.7 to 2.6%) lower mtDNAc. However, no significant associations were seen for NO2 and BC or for other exposure windows. Conclusion: Chronic exposure to PM2.5 below the EU threshold was associated with child's shorter buccal TL and lower mtDNAc, while traffic-related pollutants (BC and NO2) showed recent effects on telomere biology. Our data add to the literature on air pollution-induced effects of TL and mtDNAc, two measures part of the core axis of cellular ageing, from early life onwards.
Notes: Nawrot, TS (corresponding author), Hasselt Univ, Ctr Environm Sci, BE-3590 Hasselt, Belgium.
tim.nawrot@uhasselt.be
Other: Nawrot, TS (corresponding author), Hasselt Univ, Ctr Environm Sci, BE-3590 Hasselt, Belgium. tim.nawrot@uhasselt.be
Keywords: Air pollution;Biological ageing;Biomarkers;Children
Document URI: http://hdl.handle.net/1942/33906
ISSN: 0160-4120
e-ISSN: 1873-6750
DOI: 10.1016/j.envint.2020.106332
ISI #: WOS:000614535400015
Rights: 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Category: A1
Type: Journal Contribution
Validations: ecoom 2022
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
1-s2.0-S016041202032287X-main.pdfPublished version731.73 kBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

12
checked on Mar 29, 2024

Page view(s)

26
checked on May 20, 2022

Download(s)

12
checked on May 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.