Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUMORTIER, Freddy-
dc.contributor.authorIBANEZ MESA, Santiago-
dc.date.accessioned2007-11-28T08:48:46Z-
dc.date.available2007-11-28T08:48:46Z-
dc.date.issued1996-
dc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS, 127(2). p. 590-647-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/3395-
dc.description.abstractThis paper deals with singularities of vector fields in R(3) having a 1-jet linear conjugate to y(partial derivative/partial derivative x) + z(partial derivative/partial derivative y). They first occur in generic 3-parameter families. In codimension 3 all such singularities are mutually C-D equivalent. We give a proof of this, provide a good normal form for 3-parameter unfoldings, and show that all non-wandering behaviour in such an unfolding is of small amplitude. We also show that for codimension 4 there are exactly 5 types of singularities for C-D equivalence. The proof relies on normal form theory, blowing-up, and estimation of Abelian integrals. (C) 1996 Academic Press, Inc.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS-
dc.titleNilpotent singularities in generic 4-parameter families of 3-dimensional vector fields-
dc.typeJournal Contribution-
dc.identifier.epage647-
dc.identifier.issue2-
dc.identifier.spage590-
dc.identifier.volume127-
local.format.pages58-
dc.description.notesUNIV OVIEDO,DEPT MATEMAT,E-33007 OVIEDO,SPAIN.Dumortier, F, LIMBURGS UNIV CENTRUM,UNIV CAMPUS,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1006/jdeq.1996.0085-
dc.identifier.isiA1996UN29900013-
item.contributorDUMORTIER, Freddy-
item.contributorIBANEZ MESA, Santiago-
item.accessRightsClosed Access-
item.fullcitationDUMORTIER, Freddy & IBANEZ MESA, Santiago (1996) Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 127(2). p. 590-647.-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

28
checked on Sep 7, 2025

WEB OF SCIENCETM
Citations

29
checked on Sep 10, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.