Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3399
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlev, J.-
dc.contributor.authorOOMS, Alfons-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-28T08:51:44Z-
dc.date.available2007-11-28T08:51:44Z-
dc.date.issued1996-
dc.identifier.citationTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 348(5). p. 1709-1716-
dc.identifier.issn0002-9947-
dc.identifier.urihttp://hdl.handle.net/1942/3399-
dc.description.abstractLet G be a connected non-special semisimple algebraic group and let W be a finite dimensional G-representation such that W has trivial generic stabilizer. Let g = Lie(G). Then the semi-direct product g + W is a counterexample to the Gel'fand-Kirillov conjecture.-
dc.language.isoen-
dc.publisherAMER MATHEMATICAL SOC-
dc.subject.otherGel'fand-Kirillov conjecture-
dc.titleA class of counterexamples to the Gel'fand-Kirillov conjecture-
dc.typeJournal Contribution-
dc.identifier.epage1716-
dc.identifier.issue5-
dc.identifier.spage1709-
dc.identifier.volume348-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesLIMBURGS UNIV CENTRUM,DEPT WNI,B-3500 DIEPENBEEK,BELGIUM.Alev, J, UNIV REIMS,UFR SCI,DEPT MATH,MOULIN HOUSSE,BP 347,F-51062 REIMS,FRANCE.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1090/S0002-9947-96-01465-1-
dc.identifier.isiA1996UK76900002-
item.contributorAlev, J.-
item.contributorOOMS, Alfons-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationAlev, J.; OOMS, Alfons & VAN DEN BERGH, Michel (1996) A class of counterexamples to the Gel'fand-Kirillov conjecture. In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 348(5). p. 1709-1716.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn0002-9947-
crisitem.journal.eissn1088-6850-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.