Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34092
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGAHN, Markus-
dc.contributor.authorNeuss-Radu, M-
dc.contributor.authorPOP, Sorin-
dc.date.accessioned2021-05-27T08:11:15Z-
dc.date.available2021-05-27T08:11:15Z-
dc.date.issued2021-
dc.date.submitted2021-05-17T11:39:35Z-
dc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS, 289 , p. 95 -127-
dc.identifier.urihttp://hdl.handle.net/1942/34092-
dc.description.abstractWe consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous derivation of a homogenized model. We use appropriately scaled function spaces, which allow us to show compact-ness results, especially regarding the time-derivative and we prove strong two-scale compactness results of Kolmogorov-Simon-type, which allow to pass to the limit in the nonlinear terms. The derived macroscopic model depends on the micro-and the macro-variable, and the evolution of the underlying microstructure is approximated by time-and space-dependent reference elements.-
dc.description.sponsorshipResearch Foundation Flanders (FWO) through the Odysseus programme (Project G0G1316N)-
dc.language.isoen-
dc.publisherElsevier-
dc.subject.otherHomogenization-
dc.subject.otherEvolving micro-domain-
dc.subject.otherStrong two-scale convergence-
dc.subject.otherUnfolding operator-
dc.subject.otherReaction-diffusion-advection equation-
dc.subject.otherNonlinear boundary condition-
dc.titleHomogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions-
dc.typeJournal Contribution-
dc.identifier.epage127-
dc.identifier.spage95-
dc.identifier.volume289-
local.bibliographicCitation.jcatA1-
local.publisher.place525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jde.2021.04.013-
dc.identifier.isiWOS:000647676600004-
local.provider.typePdf-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.validationecoom 2022-
item.contributorGAHN, Markus-
item.contributorNeuss-Radu, M-
item.contributorPOP, Sorin-
item.fullcitationGAHN, Markus; Neuss-Radu, M & POP, Sorin (2021) Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 289 , p. 95 -127.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
GahnJDE.pdf
  Restricted Access
Published version528.25 kBAdobe PDFView/Open    Request a copy
2011.12915.pdfNon Peer-reviewed author version592.5 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.