Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34092
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGAHN, Markus-
dc.contributor.authorNeuss-Radu, M-
dc.contributor.authorPOP, Sorin-
dc.date.accessioned2021-05-27T08:11:15Z-
dc.date.available2021-05-27T08:11:15Z-
dc.date.issued2021-
dc.date.submitted2021-05-17T11:39:35Z-
dc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS, 289 , p. 95 -127-
dc.identifier.urihttp://hdl.handle.net/1942/34092-
dc.description.abstractWe consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous derivation of a homogenized model. We use appropriately scaled function spaces, which allow us to show compact-ness results, especially regarding the time-derivative and we prove strong two-scale compactness results of Kolmogorov-Simon-type, which allow to pass to the limit in the nonlinear terms. The derived macroscopic model depends on the micro-and the macro-variable, and the evolution of the underlying microstructure is approximated by time-and space-dependent reference elements.-
dc.description.sponsorshipResearch Foundation Flanders (FWO) through the Odysseus programme (Project G0G1316N)-
dc.language.isoen-
dc.publisherElsevier-
dc.subject.otherHomogenization-
dc.subject.otherEvolving micro-domain-
dc.subject.otherStrong two-scale convergence-
dc.subject.otherUnfolding operator-
dc.subject.otherReaction-diffusion-advection equation-
dc.subject.otherNonlinear boundary condition-
dc.titleHomogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions-
dc.typeJournal Contribution-
dc.identifier.epage127-
dc.identifier.spage95-
dc.identifier.volume289-
local.bibliographicCitation.jcatA1-
local.publisher.place525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jde.2021.04.013-
dc.identifier.isiWOS:000647676600004-
local.provider.typePdf-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.fullcitationGAHN, Markus; Neuss-Radu, M & POP, Sorin (2021) Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 289 , p. 95 -127.-
item.accessRightsRestricted Access-
item.contributorGAHN, Markus-
item.contributorNeuss-Radu, M-
item.contributorPOP, Sorin-
item.fulltextWith Fulltext-
item.validationecoom 2022-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
GahnJDE.pdf
  Restricted Access
Published version528.25 kBAdobe PDFView/Open    Request a copy
2011.12915.pdfNon Peer-reviewed author version592.5 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

24
checked on Oct 13, 2025

WEB OF SCIENCETM
Citations

22
checked on Oct 17, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.