Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/34092
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | GAHN, Markus | - |
dc.contributor.author | Neuss-Radu, M | - |
dc.contributor.author | POP, Sorin | - |
dc.date.accessioned | 2021-05-27T08:11:15Z | - |
dc.date.available | 2021-05-27T08:11:15Z | - |
dc.date.issued | 2021 | - |
dc.date.submitted | 2021-05-17T11:39:35Z | - |
dc.identifier.citation | JOURNAL OF DIFFERENTIAL EQUATIONS, 289 , p. 95 -127 | - |
dc.identifier.uri | http://hdl.handle.net/1942/34092 | - |
dc.description.abstract | We consider a reaction-diffusion-advection problem in a perforated medium, with nonlinear reactions in the bulk and at the microscopic boundary, and slow diffusion scaling. The microstructure changes in time; the microstructural evolution is known a priori. The aim of the paper is the rigorous derivation of a homogenized model. We use appropriately scaled function spaces, which allow us to show compact-ness results, especially regarding the time-derivative and we prove strong two-scale compactness results of Kolmogorov-Simon-type, which allow to pass to the limit in the nonlinear terms. The derived macroscopic model depends on the micro-and the macro-variable, and the evolution of the underlying microstructure is approximated by time-and space-dependent reference elements. | - |
dc.description.sponsorship | Research Foundation Flanders (FWO) through the Odysseus programme (Project G0G1316N) | - |
dc.language.iso | en | - |
dc.publisher | Elsevier | - |
dc.subject.other | Homogenization | - |
dc.subject.other | Evolving micro-domain | - |
dc.subject.other | Strong two-scale convergence | - |
dc.subject.other | Unfolding operator | - |
dc.subject.other | Reaction-diffusion-advection equation | - |
dc.subject.other | Nonlinear boundary condition | - |
dc.title | Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 127 | - |
dc.identifier.spage | 95 | - |
dc.identifier.volume | 289 | - |
local.bibliographicCitation.jcat | A1 | - |
local.publisher.place | 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1016/j.jde.2021.04.013 | - |
dc.identifier.isi | WOS:000647676600004 | - |
local.provider.type | - | |
local.uhasselt.uhpub | yes | - |
local.uhasselt.international | yes | - |
item.validation | ecoom 2022 | - |
item.contributor | GAHN, Markus | - |
item.contributor | Neuss-Radu, M | - |
item.contributor | POP, Sorin | - |
item.fullcitation | GAHN, Markus; Neuss-Radu, M & POP, Sorin (2021) Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 289 , p. 95 -127. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
crisitem.journal.issn | 0022-0396 | - |
crisitem.journal.eissn | 1090-2732 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
GahnJDE.pdf Restricted Access | Published version | 528.25 kB | Adobe PDF | View/Open Request a copy |
2011.12915.pdf | Non Peer-reviewed author version | 592.5 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.