Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/3410| Title: | On the performance of density functional methods for describing atomic populations, dipole moments and infrared intensities | Authors: | De Proft, F MARTIN, Jan Geerlings, P |
Issue Date: | 1996 | Publisher: | ELSEVIER SCIENCE BV | Source: | CHEMICAL PHYSICS LETTERS, 250(3-4). p. 393-401 | Abstract: | Atomic populations according to the Mulliken, electrostatic, natural population, and atomic polar tensor (APT) definitions were evaluated for first- and second-row compounds using different correlated ab initio techniques, DFP methods, and basis sets. All definitions except Mulliken exhibit modest basis set sensitivity. B3LYP predicts partial charges in agreement with high-level ab initio results. Exact-exchange corrections are more important than gradient corrections for this property. B3LYP with at least sdpf basis sets usually predicts dipole moments and infrared intensities in agreement with more accurate calculations, while semiquantitative IR intensities are obtained even with the modest cc-pVDZ basis set. | Notes: | FREE UNIV BRUSSELS,FAC WETENSCHAPPEN,B-1050 BRUSSELS,BELGIUM. LIMBURGS UNIV CENTRUM,INST MAT SCI,DEPT SBG,B-3590 DIEPENBEEK,BELGIUM. UNIV INSTELLING ANTWERP,INST SCI MAT,DEPT CHEM,B-2610 WILRIJK,BELGIUM. | Document URI: | http://hdl.handle.net/1942/3410 | DOI: | 10.1016/0009-2614(96)00057-7 | ISI #: | A1996TZ54900022 | Type: | Journal Contribution |
| Appears in Collections: | Research publications |
Show full item record
SCOPUSTM
Citations
184
checked on Oct 21, 2025
WEB OF SCIENCETM
Citations
160
checked on Oct 25, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.