Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34161
Full metadata record
DC FieldValueLanguage
dc.contributor.authorANH-KHOA, Vo-
dc.contributor.authorThi Kim Thoa Thieu-
dc.contributor.authorIjioma, Ekeoma Rowland-
dc.date.accessioned2021-05-30T19:24:47Z-
dc.date.available2021-05-30T19:24:47Z-
dc.date.issued2021-
dc.date.submitted2021-04-13T12:41:44Z-
dc.identifier.citationDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 26 (5) , p. 2451 -2477-
dc.identifier.urihttp://hdl.handle.net/1942/34161-
dc.description.abstractIn this paper, we consider a microscopic semilinear elliptic equation posed in periodically perforated domains and associated with the Fourier-type condition on internal micro-surfaces. The first contribution of this work is the construction of a reliable linearization scheme that allows us, by a suitable choice of scaling arguments and stabilization constants, to prove the weak solvability of the microscopic model. Asymptotic behaviors of the microscopic solution with respect to the microscale parameter are thoroughly investigated in the second theme, based upon several cases of scaling. In particular, the variable scaling illuminates the trivial and non-trivial limits at the macroscale, confirmed by certain rates of convergence. Relying on classical results for homogenization of multiscale elliptic problems, we design a modified two-scale asymptotic expansion to derive the corresponding macroscopic equation, when the scaling choices are compatible. Moreover, we prove the high-order corrector estimates for the homogenization limit in the energy space H-1, using a large amount of energy-like estimates. A numerical example is provided to corroborate the asymptotic analysis.-
dc.description.sponsorshipThe work of V. A. K was partly supported by the Research Foundation-Flanders (FWO) under the project named "Approximations for forward and inverse reaction-diffusion problems related to cancer models". This work was also supported by US Army Research Laboratory and US Army Research Office grant W911NF-19-1-0044.-
dc.language.isoen-
dc.publisherAMER INST MATHEMATICAL SCIENCES-AIMS-
dc.subject.otherand phrases Pore-scale model-
dc.subject.otherPore-scale model-
dc.subject.othernonlinear elliptic equations-
dc.subject.othernonlinear elliptic equations-
dc.subject.otherperforated domains-
dc.subject.otherperforated domains-
dc.subject.otherlinearization-
dc.subject.otherlinearization-
dc.subject.otherasymptotic analysis-
dc.subject.otherasymptotic analysis-
dc.subject.othercorrector estimates-
dc.subject.othercorrector estimates-
dc.titleOn a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit-
dc.typeJournal Contribution-
dc.identifier.epage2477-
dc.identifier.issue5-
dc.identifier.spage2451-
dc.identifier.volume26-
local.format.pages27-
local.bibliographicCitation.jcatA1-
dc.description.notesKhoa, VA (corresponding author), Hasselt Univ, Fac Sci, Campus Diepenbeek, BE-3590 Diepenbeek, Belgium.; Khoa, VA (corresponding author), Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA.-
dc.description.notesvakhoa.hcmus@gmail.com; thoa.thieu@kau.se; e.r.ijioma@gmail.com-
dc.description.otherKhoa, VA (corresponding author), Hasselt Univ, Fac Sci, Campus Diepenbeek, BE-3590 Diepenbeek, Belgium. vakhoa.hcmus@gmail.com; thoa.thieu@kau.se; e.r.ijioma@gmail.com-
local.publisher.placePO BOX 2604, SPRINGFIELD, MO 65801-2604 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.3934/dcdsb.2020190-
dc.identifier.isiWOS:000624972400007-
dc.contributor.orcidKhoa, Vo Anh/0000-0003-4233-0895-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Vo Anh Khoa] Hasselt Univ, Fac Sci, Campus Diepenbeek, BE-3590 Diepenbeek, Belgium.-
local.description.affiliation[Vo Anh Khoa] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA.-
local.description.affiliation[Thi Kim Thoa Thieu] Gran Sasso Sci Inst, Dept Math, Viale Francesco Crispi 7, I-67100 Laquila, Italy.-
local.description.affiliation[Thi Kim Thoa Thieu] Karlstad Univ, Dept Math & Comp Sci, Univ Gatan 2, Karlstad, Sweden.-
local.description.affiliation[Ijioma, Ekeoma Rowland] Meiji Inst Adv Study Math Sci, Nakano Ku, 4-21-1 Nakano, Tokyo, Japan.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationANH-KHOA, Vo; Thi Kim Thoa Thieu & Ijioma, Ekeoma Rowland (2021) On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 26 (5) , p. 2451 -2477.-
item.contributorANH-KHOA, Vo-
item.contributorThi Kim Thoa Thieu-
item.contributorIjioma, Ekeoma Rowland-
item.validationecoom 2022-
item.accessRightsClosed Access-
crisitem.journal.issn1531-3492-
crisitem.journal.eissn1553-524X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
author version.pdfNon Peer-reviewed author version1.11 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.