Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/34319
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | NAPOLES RUIZ, Gonzalo | - |
dc.contributor.author | Goossens, Wouter | - |
dc.contributor.author | Moesen, Quinten | - |
dc.contributor.author | Mosquera, Carlos | - |
dc.date.accessioned | 2021-06-22T13:18:19Z | - |
dc.date.available | 2021-06-22T13:18:19Z | - |
dc.date.issued | 2020 | - |
dc.date.submitted | 2021-04-22T09:28:34Z | - |
dc.identifier.citation | 2020 International joint conference on neural networks (IJCNN) , IEEE | - |
dc.identifier.isbn | 9781728169262 | - |
dc.identifier.issn | 2161-4393 | - |
dc.identifier.uri | http://hdl.handle.net/1942/34319 | - |
dc.description.abstract | Fuzzy-Rough Cognitive Networks (FRCNs) are neural networks that use rough information granules with soft boundaries to perform the classification process. Unlike other neural systems, FRCNs are lazy learners in the sense that we can build the whole model when classifying a new instance. This is possible because the weight matrix connecting the neurons is prescriptively programmed. Similar to other lazy learners, the processing time of FRCNs notably increases with the number of instances in the training set, while their performance deteriorates in noisy environments. Aiming at coping with these issues, this paper presents a new FRCN-based algorithm termed Fast k-Fuzzy-Rough Cognitive Network. This variant employs a multi-thread approach for building the information granules as computed by k-fuzzy-rough sets. Numerical simulations on 35 classification datasets show a notable reduction on FRCNs' processing time, while also delivering competitive results when compared to other lazy learners in noisy environments. | - |
dc.language.iso | en | - |
dc.publisher | IEEE | - |
dc.subject.other | parallel granulation | - |
dc.subject.other | noise | - |
dc.subject.other | fuzzy-rough sets | - |
dc.subject.other | granular cognitive mapping | - |
dc.subject.other | lazy learners | - |
dc.title | Fast k-Fuzzy-Rough Cognitive Networks | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.conferencedate | 2020, July 19-24 | - |
local.bibliographicCitation.conferencename | International Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI) | - |
local.bibliographicCitation.conferenceplace | ELECTR NETWORK | - |
local.format.pages | 8 | - |
local.bibliographicCitation.jcat | C1 | - |
dc.description.notes | Napoles, G (corresponding author), Hasselt Univ, Fac Business Econ, Hasselt, Belgium.; Napoles, G (corresponding author), Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands. | - |
dc.description.notes | gonzalo.napoles@uhasselt.be | - |
dc.description.other | Napoles, G (corresponding author), Hasselt Univ, Fac Business Econ, Hasselt, Belgium ; Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands. gonzalo.napoles@uhasselt.be | - |
local.publisher.place | 345 E 47TH ST, NEW YORK, NY 10017 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
local.bibliographicCitation.artnr | 20006153 | - |
dc.identifier.doi | 10.1109/IJCNN48605.2020.9207575 | - |
dc.identifier.isi | WOS:000626021407087 | - |
local.provider.type | wosris | - |
local.bibliographicCitation.btitle | 2020 International joint conference on neural networks (IJCNN) | - |
local.description.affiliation | [Napoles, Gonzalo; Goossens, Wouter; Moesen, Quinten; Mosquera, Carlos] Hasselt Univ, Fac Business Econ, Hasselt, Belgium. | - |
local.description.affiliation | [Napoles, Gonzalo] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands. | - |
local.uhasselt.international | yes | - |
item.validation | ecoom 2022 | - |
item.contributor | NAPOLES RUIZ, Gonzalo | - |
item.contributor | Goossens, Wouter | - |
item.contributor | Moesen, Quinten | - |
item.contributor | Mosquera, Carlos | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
item.fullcitation | NAPOLES RUIZ, Gonzalo; Goossens, Wouter; Moesen, Quinten & Mosquera, Carlos (2020) Fast k-Fuzzy-Rough Cognitive Networks. In: 2020 International joint conference on neural networks (IJCNN) , IEEE. | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
09207575.pdf Restricted Access | Published version | 768.71 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.