Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34319
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorGoossens, Wouter-
dc.contributor.authorMoesen, Quinten-
dc.contributor.authorMosquera, Carlos-
dc.date.accessioned2021-06-22T13:18:19Z-
dc.date.available2021-06-22T13:18:19Z-
dc.date.issued2020-
dc.date.submitted2021-04-22T09:28:34Z-
dc.identifier.citation2020 International joint conference on neural networks (IJCNN) , IEEE-
dc.identifier.isbn9781728169262-
dc.identifier.issn2161-4393-
dc.identifier.urihttp://hdl.handle.net/1942/34319-
dc.description.abstractFuzzy-Rough Cognitive Networks (FRCNs) are neural networks that use rough information granules with soft boundaries to perform the classification process. Unlike other neural systems, FRCNs are lazy learners in the sense that we can build the whole model when classifying a new instance. This is possible because the weight matrix connecting the neurons is prescriptively programmed. Similar to other lazy learners, the processing time of FRCNs notably increases with the number of instances in the training set, while their performance deteriorates in noisy environments. Aiming at coping with these issues, this paper presents a new FRCN-based algorithm termed Fast k-Fuzzy-Rough Cognitive Network. This variant employs a multi-thread approach for building the information granules as computed by k-fuzzy-rough sets. Numerical simulations on 35 classification datasets show a notable reduction on FRCNs' processing time, while also delivering competitive results when compared to other lazy learners in noisy environments.-
dc.language.isoen-
dc.publisherIEEE-
dc.subject.otherparallel granulation-
dc.subject.othernoise-
dc.subject.otherfuzzy-rough sets-
dc.subject.othergranular cognitive mapping-
dc.subject.otherlazy learners-
dc.titleFast k-Fuzzy-Rough Cognitive Networks-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate2020, July 19-24-
local.bibliographicCitation.conferencenameInternational Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)-
local.bibliographicCitation.conferenceplaceELECTR NETWORK-
local.format.pages8-
local.bibliographicCitation.jcatC1-
dc.description.notesNapoles, G (corresponding author), Hasselt Univ, Fac Business Econ, Hasselt, Belgium.; Napoles, G (corresponding author), Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands.-
dc.description.notesgonzalo.napoles@uhasselt.be-
dc.description.otherNapoles, G (corresponding author), Hasselt Univ, Fac Business Econ, Hasselt, Belgium ; Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands. gonzalo.napoles@uhasselt.be-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.bibliographicCitation.artnr20006153-
dc.identifier.doi10.1109/IJCNN48605.2020.9207575-
dc.identifier.isiWOS:000626021407087-
local.provider.typewosris-
local.bibliographicCitation.btitle2020 International joint conference on neural networks (IJCNN)-
local.description.affiliation[Napoles, Gonzalo; Goossens, Wouter; Moesen, Quinten; Mosquera, Carlos] Hasselt Univ, Fac Business Econ, Hasselt, Belgium.-
local.description.affiliation[Napoles, Gonzalo] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands.-
local.uhasselt.internationalyes-
item.validationecoom 2022-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorGoossens, Wouter-
item.contributorMoesen, Quinten-
item.contributorMosquera, Carlos-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationNAPOLES RUIZ, Gonzalo; Goossens, Wouter; Moesen, Quinten & Mosquera, Carlos (2020) Fast k-Fuzzy-Rough Cognitive Networks. In: 2020 International joint conference on neural networks (IJCNN) , IEEE.-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
09207575.pdf
  Restricted Access
Published version768.71 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.