Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34337
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIBIN, Pieter-
dc.contributor.authorMoonens, Arno-
dc.contributor.authorVerstraeten, Timothy-
dc.contributor.authorPerez-Sanjines, Fabian-
dc.contributor.authorHENS, Niel-
dc.contributor.authorLemey, Philippe-
dc.contributor.authorNowé, Ann-
dc.date.accessioned2021-06-23T12:24:20Z-
dc.date.available2021-06-23T12:24:20Z-
dc.date.issued2021-
dc.date.submitted2021-06-17T14:19:12Z-
dc.identifier.citationDong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (Ed.), Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020, Springer, p. 155-170.-
dc.identifier.isbn978-3-030-67669-8-
dc.identifier.isbn978-3-030-67670-4-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/34337-
dc.description.abstractEpidemics of infectious diseases are an important threat to public health and global economies. Yet, the development of prevention strategies remains a challenging process, as epidemics are non-linear and complex processes. For this reason, we investigate a deep reinforcement learning approach to automatically learn prevention strategies in the context of pandemic influenza. Firstly, we construct a new epidemiological meta-population model, with 379 patches (one for each administrative district in Great Britain), that adequately captures the infection process of pandemic influenza. Our model balances complexity and computational efficiency such that the use of reinforcement learning techniques becomes attainable. Secondly, we set up a ground truth such that we can evaluate the performance of the 'Proximal Policy Optimization' algorithm to learn in a single district of this epidemiological model. Finally, we consider a large-scale problem, by conducting an experiment where we aim to learn a joint policy to control the districts in a community of 11 tightly coupled districts, for which no ground truth can be established. This experiment shows that deep reinforcement learning can be used to learn mitigation policies in complex epidemiological models with a large state space. Moreover, through this experiment, we demonstrate that there can be an advantage to consider collaboration between districts when designing prevention strategies.-
dc.description.sponsorshipPieter Libin and Timothy Verstraeten were supported by a PhD grant of the FWO (Fonds Wetenschappelijk Onderzoek - Vlaanderen). This research acknowledges funding from the Flemish Government (AI Research Program) and from the EpiPose project (H2020/101003688). We thank the anonymous reviewers for their insightful comments.-
dc.language.isoen-
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AG-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.rightsSpringer Nature Switzerland AG 2021-
dc.subjectComputer Science - Learning-
dc.subjectComputer Science - Learning-
dc.subjectComputer Science - Artificial Intelligence-
dc.subjectComputer Science - Multiagent Systems-
dc.subject.otherComputer Science - Learning-
dc.subject.otherComputer Science - Learning-
dc.subject.otherComputer Science - Artificial Intelligence-
dc.subject.otherComputer Science - Multiagent Systems-
dc.titleDeep reinforcement learning for large-scale epidemic control-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsDong, Y.-
local.bibliographicCitation.authorsIfrim, G.-
local.bibliographicCitation.authorsMladenić, D.-
local.bibliographicCitation.authorsSaunders, C.-
local.bibliographicCitation.authorsVan Hoecke, S.-
local.bibliographicCitation.conferencedate14-18 September 2020-
local.bibliographicCitation.conferencenameJoint European Conference on Machine Learning and Knowledge Discovery in Databases-
local.bibliographicCitation.conferenceplaceGent, Belgium (Virtual)-
dc.identifier.epage170-
dc.identifier.spage155-
dc.identifier.volume12461-
local.bibliographicCitation.jcatC1-
local.publisher.placeGEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr12461-
local.type.programmeH2020-
local.relation.h2020101003688-
dc.identifier.doi10.1007/978-3-030-67670-4_10-
dc.identifier.isi000716884800010-
dc.identifier.urlhttp://arxiv.org/abs/2003.13676v1-
local.provider.typeArXiv-
local.bibliographicCitation.btitleMachine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.contributorLIBIN, Pieter-
item.contributorMoonens, Arno-
item.contributorVerstraeten, Timothy-
item.contributorPerez-Sanjines, Fabian-
item.contributorHENS, Niel-
item.contributorLemey, Philippe-
item.contributorNowé, Ann-
item.fullcitationLIBIN, Pieter; Moonens, Arno; Verstraeten, Timothy; Perez-Sanjines, Fabian; HENS, Niel; Lemey, Philippe & Nowé, Ann (2021) Deep reinforcement learning for large-scale epidemic control. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (Ed.), Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020, Springer, p. 155-170..-
item.accessRightsRestricted Access-
item.validationecoom 2022-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Pages from 2021_Book_MachineLearningAndKnowledgeDis.pdf
  Restricted Access
Published version955.77 kBAdobe PDFView/Open    Request a copy
2003.13676v1.pdfNon Peer-reviewed author version5.73 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.