Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34361
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDE BROUWER, Edward-
dc.contributor.authorBECKER, Thijs-
dc.contributor.authorMoreau, Yves-
dc.contributor.authorHavrdova, Eva-
dc.contributor.authorTrojano, Maria-
dc.contributor.authorEichau, Sara-
dc.contributor.authorOzakbas, Serkan-
dc.contributor.authorOnofrj, Marco-
dc.contributor.authorGrammond, Pierre-
dc.contributor.authorKuhle, Jens-
dc.contributor.authorKappos, Ludwig-
dc.contributor.authorSola, Patrizia-
dc.contributor.authorCartechini, Elisabetta-
dc.contributor.authorLechner-Scott, Jeannette-
dc.contributor.authorAlroughani, Raed-
dc.contributor.authorGerlach, Oliver-
dc.contributor.authorKalincik, Tomas-
dc.contributor.authorGranella, Franco-
dc.contributor.authorGrand'maison, Francois-
dc.contributor.authorBergamaschi, Roberto-
dc.contributor.authorJosé Sá, Maria-
dc.contributor.authorVAN WIJMEERSCH, Bart-
dc.contributor.authorSoysal, Aysun-
dc.contributor.authorSanchez-Menoyo, Jose-
dc.contributor.authorSolaro, Claudio-
dc.contributor.authorBoz, Cavit-
dc.contributor.authorIuliano, Gerardo-
dc.contributor.authorBuzzard, Katherine-
dc.contributor.authorAguera-Morales, Eduardo-
dc.contributor.authorTerzi, Murat-
dc.contributor.authorTrivio, Tamara-
dc.contributor.authorSpitaleri, Daniele-
dc.contributor.authorVan Pesch, Vincent-
dc.contributor.authorShaygannejad, Vahid-
dc.contributor.authorMoore, Fraser-
dc.contributor.authorOreja-Guevara, Celia-
dc.contributor.authorMaimone, Davide-
dc.contributor.authorGouider, Riadh-
dc.contributor.authorCsepany, Tunde-
dc.contributor.authorRamo-Tello, Cristina-
dc.contributor.authorPEETERS, Liesbet-
dc.date.accessioned2021-06-25T13:11:17Z-
dc.date.available2021-06-25T13:11:17Z-
dc.date.issued2021-
dc.date.submitted2021-06-18T13:23:10Z-
dc.identifier.citationComputer Methods and Programs in Biomedicine, 208 (Art N° 106180)-
dc.identifier.issn0169-2607-
dc.identifier.urihttp://hdl.handle.net/1942/34361-
dc.description.abstractBackground and Objectives: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. Methods: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. Results: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. Conclusions: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.-
dc.description.sponsorshipWe would like to thank all patients and their caregivers who have participated in this study and who have contributed data to the MSBase cohort. The list of MSBase study group contributors are provided in Appendix A. Yves Moreau is funded by Research Council KU Leuven: C14/18/092 SymBioSys3; CELSA-HIDUCTION CELSA/17/032 Flemish Government:IWT: Exaptation, Ph.D. grants FWO 06260 (Iterative and multi-level methods for Bayesian multirelational factorization with features). This research received funding from the Flemish Government under the Onderzoeksprogramma Artificile Intelligentie (AI) Vlaanderen program. EU: MELLODDY This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 831472. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA. Edward De Brouwer is funded by a FWO-SB grant. We received ethical approval for this study from the medical ethics committee of the University of Hasselt, number CME2019/059.-
dc.language.isoen-
dc.publisherELSEVIER IRELAND LTD-
dc.rights2021 Published by Elsevier B.V-
dc.subject.otherMultiple sclerosis-
dc.subject.otherMachine learning-
dc.subject.otherLongitudinal data-
dc.subject.otherRecurrent neural networks-
dc.subject.otherElectronic health records-
dc.subject.otherDisability progression-
dc.subject.otherReal-world data-
dc.titleLongitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression-
dc.typeJournal Contribution-
dc.identifier.spage106180-
dc.identifier.volume208-
local.format.pages14-
local.bibliographicCitation.jcatA1-
local.publisher.placeELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr106180-
local.type.programmeH2020-
local.relation.h2020831472-
dc.identifier.doi10.1016/j.cmpb.2021.106180-
dc.identifier.pmid34146771-
dc.identifier.isiWOS:000685503300008-
dc.identifier.eissn1872-7565-
local.provider.typePdf-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorDE BROUWER, Edward-
item.contributorBECKER, Thijs-
item.contributorMoreau, Yves-
item.contributorHavrdova, Eva-
item.contributorTrojano, Maria-
item.contributorEichau, Sara-
item.contributorOzakbas, Serkan-
item.contributorOnofrj, Marco-
item.contributorGrammond, Pierre-
item.contributorKuhle, Jens-
item.contributorKappos, Ludwig-
item.contributorSola, Patrizia-
item.contributorCartechini, Elisabetta-
item.contributorLechner-Scott, Jeannette-
item.contributorAlroughani, Raed-
item.contributorGerlach, Oliver-
item.contributorKalincik, Tomas-
item.contributorGranella, Franco-
item.contributorGrand'maison, Francois-
item.contributorBergamaschi, Roberto-
item.contributorJosé Sá, Maria-
item.contributorVAN WIJMEERSCH, Bart-
item.contributorSoysal, Aysun-
item.contributorSanchez-Menoyo, Jose-
item.contributorSolaro, Claudio-
item.contributorBoz, Cavit-
item.contributorIuliano, Gerardo-
item.contributorBuzzard, Katherine-
item.contributorAguera-Morales, Eduardo-
item.contributorTerzi, Murat-
item.contributorTrivio, Tamara-
item.contributorSpitaleri, Daniele-
item.contributorVan Pesch, Vincent-
item.contributorShaygannejad, Vahid-
item.contributorMoore, Fraser-
item.contributorOreja-Guevara, Celia-
item.contributorMaimone, Davide-
item.contributorGouider, Riadh-
item.contributorCsepany, Tunde-
item.contributorRamo-Tello, Cristina-
item.contributorPEETERS, Liesbet-
item.fullcitationDE BROUWER, Edward; BECKER, Thijs; Moreau, Yves; Havrdova, Eva; Trojano, Maria; Eichau, Sara; Ozakbas, Serkan; Onofrj, Marco; Grammond, Pierre; Kuhle, Jens; Kappos, Ludwig; Sola, Patrizia; Cartechini, Elisabetta; Lechner-Scott, Jeannette; Alroughani, Raed; Gerlach, Oliver; Kalincik, Tomas; Granella, Franco; Grand'maison, Francois; Bergamaschi, Roberto; José Sá, Maria; VAN WIJMEERSCH, Bart; Soysal, Aysun; Sanchez-Menoyo, Jose; Solaro, Claudio; Boz, Cavit; Iuliano, Gerardo; Buzzard, Katherine; Aguera-Morales, Eduardo; Terzi, Murat; Trivio, Tamara; Spitaleri, Daniele; Van Pesch, Vincent; Shaygannejad, Vahid; Moore, Fraser; Oreja-Guevara, Celia; Maimone, Davide; Gouider, Riadh; Csepany, Tunde; Ramo-Tello, Cristina & PEETERS, Liesbet (2021) Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression. In: Computer Methods and Programs in Biomedicine, 208 (Art N° 106180).-
item.accessRightsOpen Access-
item.validationecoom 2022-
crisitem.journal.issn0169-2607-
crisitem.journal.eissn1872-7565-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0169260721002546-main.pdf
  Restricted Access
Published version1.84 MBAdobe PDFView/Open    Request a copy
Elsevier Enhanced Reader.pdfPeer-reviewed author version14.31 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.