Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOUDEBROUCKX, Gilles-
dc.contributor.authorNIEDER, Daniel-
dc.contributor.authorVANDENRYT, Thijs-
dc.contributor.authorBORMANS, Seppe-
dc.contributor.authorMöbius, Hildegard-
dc.contributor.authorTHOELEN, Ronald-
dc.date.accessioned2021-06-30T14:23:05Z-
dc.date.available2021-06-30T14:23:05Z-
dc.date.issued2021-
dc.date.submitted2021-06-24T20:28:46Z-
dc.identifier.citationSensors and Actuators A: Physical, 331 (Art N° 112906)-
dc.identifier.issn0924-4247-
dc.identifier.urihttp://hdl.handle.net/1942/34394-
dc.description.abstractThe increasing development of continuous-flow applications in the field of microfluidics generates demand for in-line monitoring methods. The thermal conductivity (κ) of a liquid has been proven to be a valuable measurand for quality control, process monitoring, and analytical testing. However, most available methods for measuring κ of microliter-sized samples are limited for use on stagnant samples. In this work, a novel method and associated prototype device for measuring κ under flow conditions is presented. The so-called Transient Thermal Offset (TTO) method requires only a single metal resistive structure that is excitated with direct current (DC) pulses. To demonstrate the working, proof-of-principle experiments are performed on liquids with various κ under different flow rates. The results show that, after calibration, the presented microfluidic device can be used for accurately measuring κ of liquids under flow, as well as for determining the flow rate of liquids with a known κ. Within the explored ranges, both parameters can be determined with an average error of approximately 2.6%. The results confirm that, also under flow conditions, uncertainties concerning probing depth are eliminated with the TTO method.-
dc.description.sponsorshipThe authors acknowledge the financial support by the DAAD (German Academic Exchange Service) through the project MPFL – Meeting Point Functional Layers.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.rights2021 Elsevier B.V. All rights reserved.-
dc.subject.othermicrofluidics-
dc.subject.othercontinuous-flow-
dc.subject.otherthermal conductivity-
dc.subject.otherflow rate-
dc.titleSingle Element Thermal Sensor for Measuring Thermal Conductivity and Flow Rate inside a Microchannel-
dc.typeJournal Contribution-
dc.identifier.volume331-
local.format.pages8-
local.bibliographicCitation.jcatA1-
local.publisher.placePO BOX 564, 1001 LAUSANNE, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr112906-
dc.identifier.doi10.1016/j.sna.2021.112906-
dc.identifier.isi000706172800017-
dc.identifier.eissn-
local.provider.typePdf-
local.uhasselt.uhpubyes-
local.uhasselt.internationalyes-
item.validationecoom 2022-
item.contributorOUDEBROUCKX, Gilles-
item.contributorNIEDER, Daniel-
item.contributorVANDENRYT, Thijs-
item.contributorBORMANS, Seppe-
item.contributorMöbius, Hildegard-
item.contributorTHOELEN, Ronald-
item.fullcitationOUDEBROUCKX, Gilles; NIEDER, Daniel; VANDENRYT, Thijs; BORMANS, Seppe; Möbius, Hildegard & THOELEN, Ronald (2021) Single Element Thermal Sensor for Measuring Thermal Conductivity and Flow Rate inside a Microchannel. In: Sensors and Actuators A: Physical, 331 (Art N° 112906).-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn0924-4247-
crisitem.journal.eissn1873-3069-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
elsarticle-template_revision1.pdfNon Peer-reviewed author version6.3 MBAdobe PDFView/Open
1-s2.0-S092442472100371X-main.pdf
  Restricted Access
Published version1.72 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.