Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34551
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMelo Filho, N. G. R.-
dc.contributor.authorAngell, A-
dc.contributor.authorvan Ophem, S.-
dc.contributor.authorPluymers, B-
dc.contributor.authorClaeys, C-
dc.contributor.authorDECKERS, Elke-
dc.contributor.authorDesmet, W-
dc.date.accessioned2021-07-26T12:09:01Z-
dc.date.available2021-07-26T12:09:01Z-
dc.date.issued2020-
dc.date.submitted2021-07-12T09:52:30Z-
dc.identifier.citationPROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), p. 2503 -2512-
dc.identifier.isbn978-90-828931-1-3-
dc.identifier.urihttp://hdl.handle.net/1942/34551-
dc.description.abstractData-driven models have been increasingly used in recent years. However, their application to explore engineering design spaces only recently attracted attention. These design spaces are generally complex, which suits the use of such data-driven models, like neural networks. In this paper, a neural network is built and trained to create a surrogate model which enables the design of a resonator of a resonant metamaterial. For increased training efficiency of the neural network, physical relations are embedded in it. The trained neural network is used in design optimisation of a resonant metamaterial and benchmarked with an optimisation using finite elements. The optimisation using neural networks is shown to be computationally cheaper and yields to a better resonator design than the optimisation with finite elements. Moreover, the data dependency of neural networks is also studied. Therefore, this work shows the potential of neural networks to explore the design space of engineering design, in which multiple design tunings are required from a same geometry.-
dc.language.isoen-
dc.titleDesign space exploration for resonant metamaterials using physics guided neural networks-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateSEP 07-09, 2020-
local.bibliographicCitation.conferencenameInternational Conference on Noise and Vibration Engineering (ISMA) / International Conference on Uncertainty in Structural Dynamics (USD)-
local.bibliographicCitation.conferenceplaceLeuven, BELGIUM-
dc.identifier.epage2512-
dc.identifier.spage2503-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.isiWOS:000652006003017-
local.provider.typewosris-
local.bibliographicCitation.btitlePROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020)-
local.uhasselt.internationalno-
item.contributorMelo Filho, N. G. R.-
item.contributorAngell, A-
item.contributorvan Ophem, S.-
item.contributorPluymers, B-
item.contributorClaeys, C-
item.contributorDECKERS, Elke-
item.contributorDesmet, W-
item.accessRightsClosed Access-
item.fullcitationMelo Filho, N. G. R.; Angell, A; van Ophem, S.; Pluymers, B; Claeys, C; DECKERS, Elke & Desmet, W (2020) Design space exploration for resonant metamaterials using physics guided neural networks. In: PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), p. 2503 -2512.-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Page view(s)

34
checked on Aug 25, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.