Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34552
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoreno, Ricardo-
dc.contributor.authorChamorro, Harold R.-
dc.contributor.authorRye, Rebecca-
dc.contributor.authorKhazraj, Hesam-
dc.contributor.authorGonzalez-Longatt, Francisco-
dc.contributor.authorSood, Vijay K.-
dc.contributor.authorMARTINEZ, Wilmar-
dc.date.accessioned2021-07-26T12:14:35Z-
dc.date.available2021-07-26T12:14:35Z-
dc.date.issued2020-
dc.date.submitted2021-07-12T09:53:01Z-
dc.identifier.citation2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), p. 923 -928-
dc.identifier.isbn978-1-7281-5635-4-
dc.identifier.issn2163-5137-
dc.identifier.urihttp://hdl.handle.net/1942/34552-
dc.description.abstractEstimation systems based on PMU (Phasor Measurement Unit) data are a power system requirement based on the increasing expansion over the past decades. Kalman filter has been proved to be an adequate method for state estimation and data-driven methods. This paper applies the Unscented Kalman Filter to estimate in real-time the rotor angles. This paper proposes a predicting window as a time interval to forecast the rotor angle using real-time information. Emulated PMU sampling data have been used for carrying the simulations and have been validated using the 9-IEEE buses test system. The results confirm the method and the performance of the estimation.-
dc.language.isoen-
dc.relation.ispartofseriesProceedings of the IEEE International Symposium on Industrial Electronics-
dc.titleOnline Dynamic Assessment of System Stability using Unscented Kalman Filter-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateJUN 17-19, 2020-
local.bibliographicCitation.conferencenameIEEE 29th International Symposium on Industrial Electronics (ISIE)-
local.bibliographicCitation.conferenceplaceELECTR NETWORK-
dc.identifier.epage928-
dc.identifier.spage923-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.isiWOS:000612836800151-
dc.contributor.orcidMartinez, Wilmar/0000-0002-3050-1944; Gonzalez-Longatt,-
dc.contributor.orcidFrancisco/0000-0002-7157-9844; Khazraj, Hesam/0000-0003-3507-423X; SOOD,-
dc.contributor.orcidVIJAY/0000-0003-3859-3799-
local.provider.typewosris-
local.bibliographicCitation.btitle2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE)-
local.uhasselt.internationalyes-
item.fulltextNo Fulltext-
item.contributorMoreno, Ricardo-
item.contributorChamorro, Harold R.-
item.contributorRye, Rebecca-
item.contributorKhazraj, Hesam-
item.contributorGonzalez-Longatt, Francisco-
item.contributorSood, Vijay K.-
item.contributorMARTINEZ, Wilmar-
item.fullcitationMoreno, Ricardo; Chamorro, Harold R.; Rye, Rebecca; Khazraj, Hesam; Gonzalez-Longatt, Francisco; Sood, Vijay K. & MARTINEZ, Wilmar (2020) Online Dynamic Assessment of System Stability using Unscented Kalman Filter. In: 2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), p. 923 -928.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.