Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34665
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVermang, Bart-
dc.contributor.advisorde Wild, Jessica-
dc.contributor.authorKOHL, Thierry-
dc.contributor.authorBRAMMERTZ, Guy-
dc.contributor.authorDE WILD, Jessica-
dc.contributor.authorBULDU KOHL, Dilara-
dc.contributor.authorBIRANT, Gizem-
dc.contributor.authorMEURIS, Marc-
dc.contributor.authorPOORTMANS, Jef-
dc.contributor.authorVERMANG, Bart-
dc.date.accessioned2021-08-09T14:02:46Z-
dc.date.available2021-08-09T14:02:46Z-
dc.date.issued2021-
dc.date.submitted2021-08-06T09:15:42Z-
dc.identifier.citationSolar energy materials and solar cells, 231 (Art N° 111289)-
dc.identifier.issn0927-0248-
dc.identifier.urihttp://hdl.handle.net/1942/34665-
dc.description.abstractModern solar cell designs include an always larger variety of elements and additional layers. This approach is usually successful and leads to the development of increasingly efficient materials. However, scientifically, it makes the drawing of accurate conclusions always more challenging, due to the growing number of elements, possible defects, interfaces, and barriers. To try and remedy this problem, we developed a novel way to investigate solar cells by representing bias dependent admittance spectroscopy (CVf) measurement data in the form of a 2D loss map. In this contribution, we elaborate how this technique can be used experimentally, present some concrete results we obtained from measurements on ultra-thin CIGS solar cells and explain how they can be interpreted. We identify 3 major response domains on our typical CVf loss maps. One at high frequency that covers most of the bias range and can be related to series resistance. One at low frequency, mostly visible at strong positive and negative biases, which is related to shunt and dissipation. The last response domain, close to 100 kHz and impacting most of the bias range, can be identified as a defect response of the material. Using CVf measurements on samples with KF post deposition treatment, known for its grain boundary passivation properties, and samples that were previously submitted to accelerated lifetime testing in damp heat conditions, the impact of bulk defects, grain boundaries and conduction band offsets are investigated.-
dc.language.isoen-
dc.publisher-
dc.subject.otherAdmittance spectroscopy-
dc.subject.otherThin Film Photovoltaics-
dc.subject.otherCIGS-
dc.subject.otherLoss map-
dc.subject.otherPost Deposition Treatment-
dc.subject.otherAlkali doping-
dc.titleBias dependent admittance spectroscopy of thin film solar cells: KF post deposition treatment, accelerated lifetime testing, and their effect on the CVf loss maps-
dc.typeJournal Contribution-
dc.identifier.volume231-
local.bibliographicCitation.jcatA1-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
dc.relation.references[1] M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W.Y. Ho- Baillie, Solar cell efficiency tables (Version 55), Prog. Photovoltaics Res. Appl. 28 (2020) 3–15, https://doi.org/10.1002/pip.3228. [2] J. de Wild, M. Simor, D.G. Buldu, T. Kohl, G. Brammertz, M. Meuris, J. Poortmans, B. Vermang, Alkali treatment for single-stage co-evaporated thin CuIn0.7Ga0.3Se2 solar cells, Thin Solid Films 617 (2019) 44–48, https://doi.org/10.1016/j. tsf.2018.12.022. [3] J. de Wild, D.G. Buldu, T. Schnabel, M. Simor, T. Kohl, G. Birant, G. Brammertz, M. Meuris, J. Poortmans, B. Vermang, High V oc upon KF post-deposition treatment for ultrathin single-stage coevaporated Cu(in, Ga)Se 2 solar cells, ACS Appl. Energy Mater. 2 (2019) 6102–6111, https://doi.org/10.1021/ acsaem.9b01370. [4] E. Avancini, R. Carron, T.P. Weiss, C. Andres, M. Bürki, C. Schreiner, R. Figi, Y. E. Romanyuk, S. Buecheler, A.N. Tiwari, Effects of rubidium fluoride and potassium fluoride postdeposition treatments on Cu(in,Ga)Se2 thin films and solar cell performance, chem, Mater 29 (2017) 9695–9704, https://doi.org/10.1021/ acs.chemmater.7b03412. [5] R. Carron, S. Nishiwaki, T. Feurer, R. Hertwig, E. Avancini, J. L¨ockinger, S.C. Yang, S. Buecheler, A.N. Tiwari, Advanced alkali treatments for high-efficiency Cu(in,Ga) Se2 solar cells on flexible substrates, adv, Energy Mater 9 (2019) 1–8, https://doi. org/10.1002/aenm.201900408. [6] A. Chirilǎ, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat. Mater. 12 (2013) 1107–1111, https:// doi.org/10.1038/nmat3789. [7] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi Rapid Res. Lett. 10 (2016) 583–586, https://doi.org/10.1002/ pssr.201600199. [8] S. Siebentritt, E. Avancini, M. B¨ar, J. Bombsch, E. Bourgeois, S. Buecheler, R. Carron, C. Castro, S. Duguay, R. F´elix, E. Handick, D. Hariskos, V. Havu, P. Jackson, H.P. Komsa, T. Kunze, M. Malitckaya, R. Menozzi, M. Nesladek, N. Nicoara, M. Puska, M. Raghuwanshi, P. Pareige, S. Sadewasser, G. Sozzi, A. N. Tiwari, S. Ueda, A. Vilalta-Clemente, T.P. Weiss, F. Werner, R.G. Wilks, W. Witte, M.H. Wolter, Heavy alkali treatment of Cu(in,Ga)Se2 solar cells: surface versus bulk effects, adv, Energy Mater 10 (2020), https://doi.org/10.1002/ aenm.201903752. [9] Y. Sun, S. Lin, W. Li, S. Cheng, Y. Zhang, Y. Liu, W. Liu, Review on alkali element doping in Cu(in,Ga)Se2 thin films and solar cells, Engineering 3 (2017) 452–459, https://doi.org/10.1016/J.ENG.2017.04.020. [10] M. Rusu, T. Kodalle, L. Choubrac, N. Barreau, C.A. Kaufmann, R. Schlatmann, T. Unold, Electronic structure of the CdS/Cu(in,Ga)Se 2 interface of KF- and RbFtreated samples by Kelvin probe and photoelectron yield spectroscopy, ACS Appl. Mater. Interfaces (2021), https://doi.org/10.1021/acsami.0c20976. [11] C. Hubert, N. Naghavi, O. Roussel, A. Etchberry, D. Harikos, R. Menner, M. Pozalla, O. Kerrec, D. Lincot, The Zn(S, O,OH)/ZnMgO buffer in solar cells Part I: fast chemical thin film Cu(in,Ga)(S,Se)2-Based bath deposition of Zn(S, O,OH) buffer layers for industrial application on Co-evaporated CuIn(S,Se)2 solar cells Cu(in,Ga) Se2 and electrodeposited, prog, Photovoltaics Res. Appl. 17 (2009) 470–478, https://doi.org/10.1002/pip898. [12] A. Ennaoui, M. B¨ar, J. Klaer, K.T.R. S´aez-Araoz, M.C. Lux-Steiner, Highly-efficient Cd-free CuInS2 thin-film solar cells and mini-modules with Zn(S,O) buffer layers prepared by an alternative chemical bath process, prog, Photovoltaics Res. Appl. 14 (2006) 499–511, https://doi.org/10.1002/pip682. [13] M. Buffi`ere, S. Harel, L. Arzel, C. Deudon, N. Barreau, J. Kessler, Fast chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se 2 solar cells, Thin Solid Films 519 (2011) 7575–7578, https://doi.org/10.1016/j.tsf.2011.01.104. [14] X. Lin, H. Li, F. Qu, H. Gu, W. Wang, Cu(In,Ga)Se2 solar cell with Zn(S,O) as the buffer layer fabricated by a chemical bath deposition method, Sol. Energy 171 (2018) 130–141, https://doi.org/10.1016/j.solener.2018.06.070. [15] E.H. Nicollian, J.R. Brews, MOS (metal oxide semiconductor) physics and technology, Wiley. https://www.wiley.com/en-fi/MOS+%28Metal+Oxide+Semic onductor%29+Physics+and+Technology-p-9780471430797, 2002. [16] T. Walter, R. Herberholz, C. Müller, H.W. Schock, Determination of defect distributions from admittance measurements and application to Cu ( In, Ga ) Se2 based heterojunctions Determination of defect distributions from admittance measurements and application to Cu ( In, Ga ) Se 2 based heterojunctions, J. Appl. Phys. 80 (1996) 4411–4419, https://doi.org/10.1063/1.363401. [17] D. Abou-ras, T. Kirchartz, U. Rau, Advanced characterization techniques for thin film solar CThomasells, Wiley-VCH Verlag GmbH (2011), https://doi.org/ 10.1002/9783527636280. [18] M. Burgelman, P. Nollet, Admittance spectroscopy of thin film solar cells, Solid State Ionics 176 (2005) 2171–2175, https://doi.org/10.1016/j.ssi.2004.08.048. [19] F. Werner, S. Siebentritt, Buffer layers, defects, and the capacitance step in the admittance spectrum of a thin-film solar cell, phys, Rev. Appl. 9 (2018), https:// doi.org/10.1103/PhysRevApplied.9.054047, 54047. [20] J. Bailey, G. Zapalac, D. Poplavskyy, Metastable defect measurement from capacitance-voltage and admittance measurements in Cu(In, Ga)Se2 Solar Cells, Conf. Rec. IEEE Photovolt. Spec. Conf. 2016–Novem (2016) 2135–2140, https:// doi.org/10.1109/PVSC.2016.7750011. [21] J.M.V. Cunha, C. Rocha, C. Vinhais, P.A. Fernandes, P.M.P. Salome, Understanding the AC equivalent circuit response of ultrathin Cu(in,Ga)Se2 solar cells, IEEE J. Photovoltaics 9 (2019) 1442–1448, https://doi.org/10.1109/ JPHOTOV.2019.2927918. [22] G. Brammertz, S. Oueslati, M. Buffi`ere, J. Bekaert, H. Elanzeery, K.B. Messaoud, S. Sahayaraj, T. Nuytten, C. K¨oble, M. Meuris, J. Poortmans, Investigation of properties limiting efficiency in Cu2ZnSnSe4-based solar cells, IEEE J. Photovoltaics 5 (2014) 649–655, https://doi.org/10.1109/ JPHOTOV.2014.2376053. [23] S. Oueslati, G. Brammertz, M. Buffi`ere, H. Elanzeery, O. Touayar, C. K¨oble, J. Bekaert, M. Meuris, J. Poortmans, Physical and electrical characterization of high-performance Cu2ZnSnSe4 based thin film solar cells, Thin Solid Films 582 (2015) 224–228, https://doi.org/10.1016/j.tsf.2014.10.052. [24] R. Herberholz, M. Igalson, H.W. Schock, Distinction between bulk and interface states in spectroscopy Distinction between bulk and interface states in CuInSe 2/ CdS/ZnO by space charge spectroscopy, J. Appl. Phys. 83 (1997) 318–325, https:// doi.org/10.1063/1.366686. [25] K. Decock, S. Khelifi, S. Buecheler, F. Pianezzi, A.N. Tiwari, M. Burgelman, Defect distributions in thin film solar cells deduced from admittance measurements under different bias voltages, J. Appl. Phys. 110 (2011), https://doi.org/10.1063/ 1.3641987, 063722. [26] T. Eisenbarth, T. Unold, R. Caballero, C.A. Kaufmann, H.W. Schock, Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga) Se2thin film solar cells, J. Appl. Phys. 107 (2010), https://doi.org/10.1063/ 1.3277043, 034509. [27] T. Eisenbarth, R. Caballero, M. Nichterwitz, C.A. Kaufmann, H.W. Schock, T. Unold, Characterization of metastabilities in Cu(In,Ga)Se2 thin-film solar cells by capacitance and current-voltage spectroscopy, J. Appl. Phys. 110 (2011), https://doi.org/10.1063/1.3656453, 094506. [28] G. Brammertz, T. Kohl, J. de Wild, D.G. Buldu, G. Birant, M. Meuris, J. Poortmans, B. Vermang, Bias-dependent admittance spectroscopy of thin-film solar cells: experiment and simulation, IEEE, J. Photovoltaics 10 (2020) 1102–1111, https:// doi.org/10.1109/JPHOTOV.2020.2992350. [29] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361 (2000) 527–532, https://doi.org/10.1016/S0040- 6090(99)00825-1. [30] T. Kohl, N.A. Rivas, J. de Wild, D.G. Buldu, G. Birant, G. Brammertz, M. Meuris, F. U. Renner, J. Poortmans, B. Vermang, Inclusion of water in Cu(in, Ga)Se 2 absorber material during accelerated lifetime testing, ACS Appl. Energy Mater. 3 (2020) 5120–5125, https://doi.org/10.1021/acsaem.0c00610. [31] D.G. Buldu, J. de Wild, T. Kohl, S. Suresh, G. Birant, G. Brammertz, M. Meuris, J. Poortmans, B. Vermang, Wet processing in state-of-the-art cu(In,ga)se2 thin film solar cells, Solid State Phenom. 282 SSP (2018) 300–305. https://doi.org /10.4028/www.scientific.net/SSP.282.300. [32] C. Frisk, C. Platzer-Bj¨orkman, J. Olsson, P. Szaniawski, J.T. W¨atjen, V. Fj¨allstr¨om, P. Salom´e, M. Edoff, Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models, J. Phys. D Appl. Phys. 47 (2014), https://doi.org/10.1088/0022-3727/47/48/485104, 485104. T. Kohl et al. Solar Energy Materials and Solar Cells 231 (2021) 111289 11 [33] A. Stokes, M. Al-Jassim, D. DIercks, A. Clarke, B. Gorman, Impact of wide-ranging nanoscale chemistry on band structure at Cu(in, Ga)Se2 grain boundaries, sci, For. Rep. 7 (2017) 1–11, https://doi.org/10.1038/s41598-017-14215-0. [34] A. Vilalta-Clemente, M. Raghuwanshi, S. Duguay, C. Castro, E. Cadel, P. Pareige, P. Jackson, R. Wuerz, D. Hariskos, W. Witte, Rubidium distribution at atomic scale in high efficient Cu(In,Ga)Se2 thin-film solar cells, Appl. Phys. Lett. 112 (2018), https://doi.org/10.1063/1.5020805, 103105. [35] P. Sch¨oppe, S. Sch¨onherr, P. Jackson, R. Wuerz, W. Wisniewski, M. Ritzer, M. Zapf, A. Johannes, C.S. Schnohr, C. Ronning, Overall distribution of rubidium in highly efficient Cu(in,Ga)Se2 solar cells, ACS Appl. Mater. Interfaces 10 (2018) 40592–40598, https://doi.org/10.1021/acsami.8b16040. [36] F. Pianezzi, P. Reinhard, A. Chirilǎ, B. Bissig, S. Nishiwaki, S. Buecheler, A. N. Tiwari, Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells, Phys. Chem. Chem. Phys. 16 (2014) 8843–8851, https://doi.org/10.1039/c4cp00614c. [37] N. Nicoara, R. Manaligod, P. Jackson, D. Hariskos, W. Witte, G. Sozzi, R. Menozzi, S. Sadewasser, Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments, Nat. Commun. 10 (2019) 1–8, https://doi.org/10.1038/s41467-019-11996-y. [38] C.P. Muzzillo, J.D. Poplawsky, H.M. Tong, W. Guo, T. Anderson, Revealing the beneficial role of K in grain interiors, grain boundaries, and at the buffer interface for highly efficient CuInSe2 solar cells, Prog. Photovoltaics Res. Appl. 26 (2018) 825–834, https://doi.org/10.1002/pip.3022. [39] M. Raghuwanshi, E. Cadel, S. Duguay, L. Arzel, N. Barreau, P. Pareige, Influence of Na on grain boundary and properties of Cu(In,Ga)Se2 solar cells, Prog. Photovoltaics Res. Appl. 25 (2017) 367–375, https://doi.org/10.1002/pip.2869. [40] M. Raghuwanshi, A. Vilalta-Clemente, C. Castro, S. Duguay, E. Cadel, P. Jackson, D. Hariskos, W. Witte, P. Pareige, Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se 2 solar cells, Nanomater. Energy 60 (2019) 103–110, https://doi.org/10.1016/j. nanoen.2019.03.028. [41] U. Rau, K. Taretto, S. Siebentritt, Grain boundaries in Cu(In,∈Ga)(Se,∈S)2 thin-film solar cells, Appl. Phys. Mater. Sci. Process 96 (2009) 221–234, https://doi.org/ 10.1007/s00339-008-4978-0.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr111289-
local.type.programmeH2020-
local.relation.h2020715027-
dc.identifier.doi10.1016/j.solmat.2021.111289-
dc.identifier.isi000694775200002-
dc.identifier.eissn1879-3398-
local.provider.typeCrossRef-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.fullcitationKOHL, Thierry; BRAMMERTZ, Guy; DE WILD, Jessica; BULDU KOHL, Dilara; BIRANT, Gizem; MEURIS, Marc; POORTMANS, Jef & VERMANG, Bart (2021) Bias dependent admittance spectroscopy of thin film solar cells: KF post deposition treatment, accelerated lifetime testing, and their effect on the CVf loss maps. In: Solar energy materials and solar cells, 231 (Art N° 111289).-
item.contributorKOHL, Thierry-
item.contributorBRAMMERTZ, Guy-
item.contributorDE WILD, Jessica-
item.contributorBULDU KOHL, Dilara-
item.contributorBIRANT, Gizem-
item.contributorMEURIS, Marc-
item.contributorPOORTMANS, Jef-
item.contributorVERMANG, Bart-
item.validationecoom 2022-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn0927-0248-
crisitem.journal.eissn1879-3398-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0927024821003317-main.pdf
  Restricted Access
Published version5.51 MBAdobe PDFView/Open    Request a copy
Manuscript_CVf_KF&ALT_solmat_Review_NoHighlight.pdfPeer-reviewed author version860.14 kBAdobe PDFView/Open
Manuscript_CVf_KF&ALT_SI_Review.pdf
  Restricted Access
Proof of peer review314.39 kBAdobe PDFView/Open    Request a copy
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Apr 30, 2024

Page view(s)

32
checked on Jul 31, 2022

Download(s)

4
checked on Jul 31, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.