Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3469
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BROECK, Christian-
dc.contributor.authorREIMANN, Peter-
dc.date.accessioned2007-11-28T14:37:45Z-
dc.date.available2007-11-28T14:37:45Z-
dc.date.issued1996-
dc.identifier.citationPHYSICAL REVIEW LETTERS, 76(12). p. 2188-2191-
dc.identifier.issn0031-9007-
dc.identifier.urihttp://hdl.handle.net/1942/3469-
dc.description.abstractWe study both on-line and off-line unsupervised learning from p random patterns which are uniformly distributed on the N-sphere with the exception of a single symmetry breaking orientation B, along which they may be arbitrarily distributed. Supervised learning from the same kind of patterns is included as a special case. In the thermodynamic limit N --> infinity with alpha = p/N fixed we calculate the overlap R(alpha)= B . J/\J\\B\ between the unknown ''true'' B and the optimal ''Bayes'' hypothesis J with particular emphasis on the small and large cu asymptotics and the phenomenon of retarded learning. Finally, we identify a cost function whose minimum reproduces the off-line Bayes overlap.-
dc.language.isoen-
dc.publisherAMERICAN PHYSICAL SOC-
dc.titleUnsupervised learning by examples: On-line versus off-line-
dc.typeJournal Contribution-
dc.identifier.epage2191-
dc.identifier.issue12-
dc.identifier.spage2188-
dc.identifier.volume76-
local.format.pages4-
dc.description.notesVandenBroeck, C, LIMBURGS UNIV CENTRUM,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1103/PhysRevLett.76.2188-
dc.identifier.isiA1996TZ98400051-
item.contributorVAN DEN BROECK, Christian-
item.contributorREIMANN, Peter-
item.accessRightsClosed Access-
item.fullcitationVAN DEN BROECK, Christian & REIMANN, Peter (1996) Unsupervised learning by examples: On-line versus off-line. In: PHYSICAL REVIEW LETTERS, 76(12). p. 2188-2191.-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.