Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/34706
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERCRUYSSE, Willem-
dc.contributor.authorSmeets, Jolien-
dc.contributor.authorHAELDERMANS, Tom-
dc.contributor.authorJOOS, Bjorn-
dc.contributor.authorHARDY, An-
dc.contributor.authorSAMYN, Pieter-
dc.contributor.authorYPERMAN, Jan-
dc.contributor.authorVANREPPELEN, Kenny-
dc.contributor.authorCARLEER, Robert-
dc.contributor.authorADRIAENSENS, Peter-
dc.contributor.authorMARCHAL, Wouter-
dc.contributor.authorVANDAMME, Dries-
dc.date.accessioned2021-08-20T13:55:22Z-
dc.date.available2021-08-20T13:55:22Z-
dc.date.issued2021-
dc.date.submitted2021-08-20T07:09:47Z-
dc.identifier.citationJournal of analytical and applied pyrolysis (Print), 159 (Art N° 105294)-
dc.identifier.issn0165-2370-
dc.identifier.urihttp://hdl.handle.net/1942/34706-
dc.description.abstractHedera helix L., the common ivy, is an excellent evergreen climbing plant to be applied in vertical green walls to improve urban ecosystems. These green walls need to be trimmed regularly, yielding a biomass stream, which could be promising as a renewable feedstock for biochar production and the extraction of valuable chemicals. The potential of raw and spent (extracted) common ivy as a biochar feedstock was evaluated using slow pyrolysis at different temperatures: 400, 550 and 700 • C. Biochars produced at 400 • C showed a high carbon, nitrogen and ash content, while still having residual surface functionalities. These biochars are therefore interesting to be applied as soil fertilizer. Additionally, it was found that the impact of different green extraction processes (ethanol extraction versus steam distillation) before pyrolysis on the biochar properties was generally positive. Ethanol extractions increased biochar yields and the fraction of inorganic nutrients. Furthermore, ethanol extractions increased the carbon sequestration potential compared to raw ivy. Steam distilled biochar exhibited a very high carbon content (83 %), biochar stability (97 %) and aromaticity (100 %). Steam distillation did not affect the carbon sequestration potential. In conclusion, this investigation affirms common ivy as a promising feedstock for pyrolysis based biorefinery processes.-
dc.description.sponsorshipResearch Foundation Flanders (FWO SB – 1S92020N and Hercules project AUHL/15/2-GOH3816N) UHasselt BOF (R-10512)-
dc.language.isoen-
dc.publisherElservier-
dc.rightsElsevier B.V.-
dc.subject.otherCommon ivy-
dc.subject.otherSlow pyrolysis-
dc.subject.otherBiochar-
dc.subject.otherExtraction-
dc.subject.otherPyrolysis temperature-
dc.titleBiochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties-
dc.typeJournal Contribution-
dc.identifier.volume159-
local.format.pages10-
local.bibliographicCitation.jcatA1-
local.publisher.placeAmsterdam-
dc.relation.references[1] T. Sternberg, H. Viles, A. Cathersides, M. Edwards, Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments, Sci. Total Environ. 409 (2010) 162–168, https://doi.org/10.1016/j.scitotenv.2010.09.022. [2] R.W.F. Cameron, J.E. Taylor, M.R. Emmett, What’s ‘cool’ in the world of green façades? How plant choice influences the cooling properties of green walls, Build. Environ. 73 (2014) 198–207, https://doi.org/10.1016/j.buildenv.2013.12.005. [3] G. P´erez, J. Coma, I. Martorell, L.F. Cabeza, Vertical Greenery Systems (VGS) for energy saving in buildings: a review, Renew. Sustain. Energy Rev. 39 (2014) 139–165, https://doi.org/10.1016/j.rser.2014.07.055. [4] B. Majester-Savornin, R. Elias, A. Diaz-Lanza, G. Balansard, M. Gasquet, F. Delmas, Saponins of the ivy plant, Hedera helix, and their leishmanicidic activity, Planta Med. 57 (1991) 260–262, https://doi.org/10.1055/s-2006-960086. [5] B. Demirci, M. Goppel, F. Demirci, G. Franz, HPLC profiling and quantification of active principles in leaves of Hedera helix L, Pharmazie 59 (2004) 770–774. [6] M. Yu, Y.J. Shin, N. Kim, G. Yoo, S.J. Park, S.H. Kim, Determination of Saponins and Flavonoids in Ivy leaf extracts using HPLC-DAD, J. Chromatogr. Sci. 53 (2015) 478–483, https://doi.org/10.1093/chromsci/bmu068. [7] Y. Lutsenko, W. Bylka, I. Matławska, R. Darmohray, Hedera helix as a medicinal plant, Herba Pol. 56 (2010) 84–96. [8] European Medicines Agency, Hedera Helicis Folium - AR, 2018. www.ema.europa. eu/contact. [9] A.E. Al-snafi, Pharmacological and therapeutic activities of Hedera helix-A review, IOSR J. Pharm. 8 (2018) 41–53. [10] Y. Gaillard, P. Blaise, A. Darr´e, T. Barbier, G. P´epin, An unusual case of death: Suffocation caused by leaves of common ivy (Hedera helix). Detection of hederacoside C, α-hederin, and hederagenin by LC-EI/MS, J. Anal. Toxicol. 27 (2003) 257–262, https://doi.org/10.1093/jat/27.4.257. [11] O. Ros¸ca-Casian, C. Mircea, L. Vlase, A.M. Gheldiu, D.T. Teuca, M. Parvu, ˆ Chemical composition and antifungal activity of Hedera helix leaf ethanolic extract, Acta. Biol. Hung. 68 (2017) 196–207, https://doi.org/10.1556/018.68.2017.2.7. [12] F. Runkel, W. Schneider, O. Schmidt, G.M. Engelhard, Process for preparing an extract from ivy leaves, US 7,943,184 B2, 2011. https://doi.org/10.1038/in comms1464. [13] A.O. Tucker, M.J. Maciarello, Essential oil of English Ivy,Hedera helix L. ‘Hibernica’, J. Essent. Oil Res. 6 (1994) 187–188, https://doi.org/10.1080/ 10412905.1994.9698352. [14] S. Yani, X. Gao, P. Grayling, H. Wu, Steam distillation of mallee leaf: extraction of 1,8-cineole and changes in the fuel properties of spent biomass, Fuel 133 (2014) 341–349, https://doi.org/10.1016/j.fuel.2014.05.030. [15] X. Gao, S. Yani, H. Wu, Pyrolysis of spent biomass from mallee leaf steam distillation: biochar properties and recycling of inherent inorganic nutrients, Energy Fuels 28 (2014) 4642–4649, https://doi.org/10.1021/ef501114v. [16] V. Dhyani, T. Bhaskar, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renew. Energy 129 (2018) 695–716, https://doi.org/10.1016/j. renene.2017.04.035. [17] Y.S. Ok, S.X. Chang, B. Gao, H.-J. Chung, SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research, Environ. Technol. Innov. 4 (2015) 206–209, https://doi.org/10.1016/j.eti.2015.08.003. [18] A. El-Naggar, A.H. El-Naggar, S.M. Shaheen, B. Sarkar, S.X. Chang, D.C.W. Tsang, J. Rinklebe, Y.S. Ok, Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review, J. Environ. Manage. 241 (2019) 458–467, https://doi.org/10.1016/j. jenvman.2019.02.044. [19] M. Marmiroli, U. Bonas, D. Imperiale, G. Lencioni, F. Mussi, N. Marmiroli, E. Maestri, Structural and functional features of chars from different biomasses as potential plant amendments, Front. Plant Sci. 9 (2018) 1–13, https://doi.org/ 10.3389/fpls.2018.01119. [20] C. Santín, S.H. Doerr, A. Merino, T.D. Bucheli, R. Bryant, P. Ascough, X. Gao, C. A. Masiello, Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars, Sci. Rep. 7 (2017) 1–11, https://doi.org/10.1038/s41598-017-10455-2. [21] J. Lehmann, J. Gaunt, M. Rondon, Bio-char sequestration in terrestrial ecosystems – a review, Mitig. Adapt. Strateg. Glob. Chang. 11 (2006) 403–427, https://doi. org/10.1007/s11027-005-9006-5. [22] ASTM International, Standard test method for determination of ethanol extractives in biomass, ASTM Stand. 11 (2004) 1–2. [23] K. Vanreppelen, S. Vanderheyden, T. Kuppens, S. Schreurs, J. Yperman, R. Carleer, Activated carbon from pyrolysis of Brewer’s spent grain: production and adsorption properties, Waste Manag. Res. (2014), https://doi.org/10.1177/ 0734242X14538306. [24] T. Haeldermans, J. Claesen, J. Maggen, R. Carleer, J. Yperman, P. Adriaensens, P. Samyn, D. Vandamme, A. Cuypers, K. Vanreppelen, S. Schreurs, Microwave assisted and conventional pyrolysis of MDF – characterization of the produced biochars, J. Anal. Appl. Pyrolysis 138 (2019) 218–230, https://doi.org/10.1016/j. jaap.2018.12.027. [25] ASTM International, Standard test method for total ash content of activated carbon, ASTM Stand. 15 (2004) 1–2, https://doi.org/10.1520/D2866-11.2. [26] O. Faix, Classification of lignins from different botanical origins by FT-IR spectroscopy, Holzforschung 45 (1991) 21–28, https://doi.org/10.1515/ hfsg.1991.45.s1.21. [27] C.H. Chia, B. Gong, S.D. Joseph, C.E. Marjo, P. Munroe, A.M. Rich, Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX, Vib. Spectrosc. 62 (2012) 248–257, https://doi.org/10.1016/j.vibspec.2012.06.006. [28] B. Singh, M. Camps-Arbestain, J. Lehmann, CSIRO (Australia), Biochar: A Guide to Analytical Methods, 2017. https://books.google.co.uk/books?hl=en&lr=&id=ie RrDgAAQBAJ&oi=fnd&pg=PP1&dq=biochar:+a+guide+to+analytical+meth ods&ots=zBBO1rVDD7&sig=ysnb7inmaSDYu1EHCJSbOkejehg&redir_e sc=y#v=onepage&q&f=false. [29] C.Y. Liang, R.H. Marchessault, Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.1, J. Polym. Sci. 39 (1959) 269–278, https://doi.org/10.1002/pol.1959.1203913521. [30] G. Müller, C. Schopper, ¨ H. Vos, A. Kharazipour, A. Polle, FTIR-ATR spectroscopic analyses of changes in wood properties during particleand fibreboard production of hardand softwood trees, BioResources 4 (2009) 49–71, https://doi.org/10.15376/ biores.4.1.49-71. [31] A.M. Raspolli Galletti, A. D’Alessio, D. Licursi, C. Antonetti, G. Valentini, A. Galia, N. Nassi O Di Nasso, Midinfrared FT-IR as a tool for monitoring herbaceous biomass composition and its conversion to furfural, J. Spectrosc. 2015 (2015), https://doi.org/10.1155/2015/719042. [32] Y. Liu, Z. He, M. Uchimiya, Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy, Mod. Appl. Sci. 9 (2015) 246–253, https://doi.org/10.5539/mas.v9n4p246. [33] A. Cross, S.P. Sohi, A method for screening the relative long-term stability of biochar, GCB Bioenergy 5 (2013) 215–220, https://doi.org/10.1111/gcbb.12035. [34] M.J. Antal, M. Grønli, The Art, Science, and technology of charcoal production, Ind. Eng. Chem. Res. 42 (2003) 1619–1640, https://doi.org/10.1021/ie0207919. [35] A.K. Patel, Land applications of biochar: an emerging area. Waste to Wealth, Energy, Environ. Sustain., 2018, pp. 171–197, https://doi.org/10.1007/978-981- 10-7431-8_9. [36] T. Kan, V. Strezov, T.J. Evans, Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters, Renew. Sustain. Energy Rev. 57 (2016) 1126–1140, https://doi.org/10.1016/j.rser.2015.12.185. [37] H. Nan, F. Yang, L. Zhao, O. Maˇsek, X. Cao, Z. Xiao, Interaction of inherent minerals with carbon during biomass pyrolysis weakens biochar carbon sequestration potential, ACS Sustain. Chem. Eng. 7 (2019) 1591–1599, https://doi. org/10.1021/acssuschemeng.8b05364. [38] W. Chen, Y. Chen, H. Yang, M. Xia, K. Li, X. Chen, H. Chen, Co-pyrolysis of lignocellulosic biomass and microalgae: products characteristics and interaction effect, Bioresour. Technol. 245 (2017) 860–868, https://doi.org/10.1016/j. biortech.2017.09.022. [39] I. Bezruk, M. Marksa, V. Georgiyants, L. Ivanauskas, L. Raudone, Phytogeographical profiling of ivy leaf (Hedera helix L.), Ind. Crops Prod. 154 (2020), 112713, https://doi.org/10.1016/j.indcrop.2020.112713. [40] D. Rainer Cremer, K. Eichner, The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders, Food Chem. 71 (2000) 37–43, https://doi.org/10.1016/S0308-8146(00)00122-9. [41] Z. Wang, Strecker degradation. Compr. Org. Name React. Reagents., 2010, pp. 2701–2706, https://doi.org/10.1002/9780470638859.conrr607. [42] G. Bekiaris, G. Koutrotsios, P.A. Tarantilis, C.S. Pappas, G.I. Zervakis, FTIR assessment of compositional changes in lignocellulosic wastes during cultivation of Cyclocybe cylindracea mushrooms and use of chemometric models to predict production performance, J. Mater. Cycles Waste Manag. 22 (2020) 1027–1035, https://doi.org/10.1007/s10163-020-00995-7. [43] L. Ferrara, D. Naviglio, S. Faralli, Identification of Active Principles of Hedera helix L. in aqueous extracts. J. Phytochem. Phot., 2013, pp. 170–175. https://www.res earchgate.net/profile/Daniele_Naviglio/publication/236329898_Identification_ of_Active_Principles_of_Hedera_helix_L_in_aqueous_extracts/links/0deec 517a295a7f622000000/Identification-of-Active-Principles-of-Hedera-helix-L-in-aq ueous-extracts. [44] K.K. Pandey, A.J. Pitman, FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi, Int. Biodeterior. Biodegrad. 52 (2003) 151–160, https://doi.org/10.1016/S0964-8305(03)00052-0. [45] K.K. Dasari, V. Gumtapure, S. Dutta, Upgrading of coconut shell-derived pyrolytic bio-oil by thermal and catalytic deoxygenation, Energy Sources, Part A Recov. Util. Environ. Eff. 00 (2020) 1–10, https://doi.org/10.1080/15567036.2019.1711465. [46] M.M. Rahman, A.K. Mallik, M.A. Khan, Influences of various surface pretreatments on the mechanical and degradable properties of photografted oil palm fibers, J. Appl. Polym. Sci. 105 (2007) 3077–3086, https://doi.org/10.1002/app.26481. [47] X. Wang, H. Ren, Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescens Mazel) and two wood species, Appl. Surf. Sci. 254 (2008) 7029–7034, https://doi.org/10.1016/j.apsusc.2008.05.121. [48] K. Jindo, H. Mizumoto, Y. Sawada, M.A. Sanchez-Monedero, T. Sonoki, Physical and chemical characterization of biochars derived from different agricultural residues, Biogeosciences 11 (2014) 6613–6621, https://doi.org/10.5194/bg-11- 6613-2014. [49] H. Wang, X. Wang, Y. Cui, Z. Xue, Y. Ba, Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): product yield prediction and biochar formation W. Vercruysse et al. Journal of Analytical and Applied Pyrolysis 159 (2021) 105294 10 mechanism, Bioresour. Technol. 263 (2018) 444–449, https://doi.org/10.1016/j. biortech.2018.05.040. [50] D. Chen, J. Zhou, Q. Zhang, Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo, Bioresour. Technol. 169 (2014) 313–319, https://doi.org/10.1016/j.biortech.2014.07.009. [51] P. Glarborg, Fuel nitrogen conversion in solid fuel fired systems, Prog. Energy Combust. Sci. 29 (2003) 89–113, https://doi.org/10.1016/S0360-1285(02)00031- X. [52] EBC, European Biochar Certificate - Guidelines for a Sustainable Production of Biochar’, Eur. Biochar Found. (EBC), Arbaz, Switzerland, 2012, pp. 1–22, https:// doi.org/10.13140/RG.2.1.4658.7043. Version 6.1 19th June. (2020). [53] L. Huang, Y. Chen, G. Liu, S. Li, Y. Liu, X. Gao, Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis, Energy 87 (2015) 31–40, https://doi.org/10.1016/j.energy.2015.04.089. [54] H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (2007) 1781–1788, https://doi.org/ 10.1016/j.fuel.2006.12.013. [55] J.W.C. Wong, J.B.W. Webber, U.O. Ogbonnaya, Characteristics of biochar porosity by NMR and study of ammonium ion adsorption, J. Anal. Appl. Pyrolysis 143 (2019), 104687, https://doi.org/10.1016/j.jaap.2019.104687. [56] J. Sun, F. He, Y. Pan, Z. Zhang, Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types, Acta Agric. Scand. Sect. B — Soil Plant Sci. 67 (2017) 12–22, https://doi.org/10.1080/ 09064710.2016.1214745. [57] R.R. Domingues, M.A. S´ anchez-Monedero, K.A. Spokas, L.C.A. Melo, P.F. Trugilho, M.N. Valenciano, C.A. Silva, Enhancing cation exchange capacity of weathered soils using biochar: feedstock, pyrolysis conditions and addition rate, Agronomy 10 (2020) 824, https://doi.org/10.3390/agronomy10060824. [58] W.J. Liu, W.W. Li, H. Jiang, H.Q. Yu, Fates of chemical elements in biomass during its pyrolysis, Chem. Rev. 117 (2017) 6367–6398, https://doi.org/10.1021/acs. chemrev.6b00647. [59] M. Ishiwatari, R. Ishiwatari, H. Sakashita, T. Tatsumi, Thermogravimetry and pyrolysis-GC of chlorophyll-a: with a special emphasis on thermal behavior of its phytyl chain, J. Anal. Appl. Pyrolysis 35 (1995) 237–247, https://doi.org/ 10.1016/0165-2370(95)00914-4. [60] D. Xu, L. Yang, M. Zhao, Y. Song, Karnowo, H. Zhang, X. Hu, H. Sun, S. Zhang, N evolution and physiochemical structure changes in chars during co-pyrolysis: effects of abundance of glucose in fiberboard, Energies 13 (2020), https://doi.org/ 10.3390/en13195105. [61] Q. Zhou, X. Jiang, X. Li, C.Q. Jia, W. Jiang, Preparation of high-yield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene, RSC Adv. 8 (2018) 30171–30179, https://doi.org/10.1039/c8ra05714a. [62] E.E. Kwon, T. Lee, Y.S. Ok, D.C.W. Tsang, C. Park, J. Lee, Effects of calcium carbonate on pyrolysis of sewage sludge, Energy 153 (2018) 726–731, https://doi. org/10.1016/j.energy.2018.04.100. [63] T. Haeldermans, L. Campion, T. Kuppens, K. Vanreppelen, A. Cuypers, S. Schreurs, A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis, Bioresour. Technol. 318 (2020), 124083, https://doi.org/10.1016/j.biortech.2020.124083. [64] J.F. Peters, D. Iribarren, J. Dufour, Biomass pyrolysis for biochar or energy applications? A life cycle assessment, Environ. Sci. Technol. 49 (2015) 5195–5202, https://doi.org/10.1021/es5060786. [65] Q. Yang, H. Zhou, P. Bartocci, F. Fantozzi, O. Maˇsek, F.A. Agblevor, Z. Wei, H. Yang, H. Chen, X. Lu, G. Chen, C. Zheng, C.P. Nielsen, M.B. McElroy, Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals, Nat. Commun. 12 (2021) 1698, https://doi.org/ 10.1038/s41467-021-21868-z.-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr105294-
dc.identifier.doi10.1016/j.jaap.2021.105294-
dc.identifier.isi000697681400003-
local.provider.typePdf-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.validationecoom 2022-
item.contributorVERCRUYSSE, Willem-
item.contributorSmeets, Jolien-
item.contributorHAELDERMANS, Tom-
item.contributorJOOS, Bjorn-
item.contributorHARDY, An-
item.contributorSAMYN, Pieter-
item.contributorYPERMAN, Jan-
item.contributorVANREPPELEN, Kenny-
item.contributorCARLEER, Robert-
item.contributorADRIAENSENS, Peter-
item.contributorMARCHAL, Wouter-
item.contributorVANDAMME, Dries-
item.accessRightsOpen Access-
item.fullcitationVERCRUYSSE, Willem; Smeets, Jolien; HAELDERMANS, Tom; JOOS, Bjorn; HARDY, An; SAMYN, Pieter; YPERMAN, Jan; VANREPPELEN, Kenny; CARLEER, Robert; ADRIAENSENS, Peter; MARCHAL, Wouter & VANDAMME, Dries (2021) Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties. In: Journal of analytical and applied pyrolysis (Print), 159 (Art N° 105294).-
item.fulltextWith Fulltext-
crisitem.journal.issn0165-2370-
crisitem.journal.eissn1873-250X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0165237021002801-main.pdf
  Restricted Access
Published version1.34 MBAdobe PDFView/Open    Request a copy
Vercruysse2021-JAAP-preproof.pdfNon Peer-reviewed author version3.8 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

13
checked on May 2, 2024

Page view(s)

62
checked on May 20, 2022

Download(s)

10
checked on May 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.