Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3473
Full metadata record
DC FieldValueLanguage
dc.contributor.authorREIMANN, Peter-
dc.date.accessioned2007-11-28T14:40:52Z-
dc.date.available2007-11-28T14:40:52Z-
dc.date.issued1996-
dc.identifier.citationJOURNAL OF STATISTICAL PHYSICS, 85(3-4). p. 403-425-
dc.identifier.issn0022-4715-
dc.identifier.urihttp://hdl.handle.net/1942/3473-
dc.description.abstractThe escape rate for one-dimensional noisy maps near a crisis is investigated. A previously introduced perturbation theory is extended to very general kinds of weak uncorrelated noise, including multiplicative white noise as a special case. For single-humped maps near the boundary crisis at fully developed chaos an asymptotically exact scaling law for the rate is derived. It predicts that transient chaos is stabilized by basically any noise of appropriate strength provided the maximum of the map is of sufficiently large order. A simple heuristic explanation of this effect is given. The escape rate is discussed in detail for noise distributions of Levy, dichotomous, and exponential type. In the latter case, the rate is dominated by an exponentially leading Arrhenius factor in the deep precritical regime. However, the preexponential factor may still depend more strongly than any power law on the noise strength.-
dc.language.isoen-
dc.publisherPLENUM PUBL CORP-
dc.subject.othernoisy map; crisis; escape rate; structural instability; dichotomous noise; Levy distribution-
dc.titleNoisy one-dimensional maps near a crisis .2. General uncorrelated weak noise-
dc.typeJournal Contribution-
dc.identifier.epage425-
dc.identifier.issue3-4-
dc.identifier.spage403-
dc.identifier.volume85-
local.format.pages23-
dc.description.notesLIMBURGS UNIV CTR,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
local.classdsPublValOverrule/internal_author_not_expected-
dc.identifier.doi10.1007/BF02174212-
dc.identifier.isiA1996VN94200004-
item.contributorREIMANN, Peter-
item.fulltextNo Fulltext-
item.fullcitationREIMANN, Peter (1996) Noisy one-dimensional maps near a crisis .2. General uncorrelated weak noise. In: JOURNAL OF STATISTICAL PHYSICS, 85(3-4). p. 403-425.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

15
checked on Sep 14, 2025

WEB OF SCIENCETM
Citations

14
checked on Sep 10, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.