Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3491
Full metadata record
DC FieldValueLanguage
dc.contributor.authorpatrick, AE-
dc.date.accessioned2007-11-28T15:24:57Z-
dc.date.available2007-11-28T15:24:57Z-
dc.date.issued1996-
dc.identifier.citationJOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 29(14). p. 3911-3922-
dc.identifier.issn0305-4470-
dc.identifier.urihttp://hdl.handle.net/1942/3491-
dc.description.abstractWe derive the leading term in the large-N asymptotic expansion of the partition function of the Hopfield model with finite number of patterns. We show that this leading-order term is deterministic in the high-temperature region. In the low-temperature region and at the critical point it is random with the distribution governed by chi(2), normal, or iterated exponential distributions.-
dc.language.isoen-
dc.publisherIOP PUBLISHING LTD-
dc.titleThe distribution of the partition function of the Hopfield model with finite number of patterns-
dc.typeJournal Contribution-
dc.identifier.epage3922-
dc.identifier.issue14-
dc.identifier.spage3911-
dc.identifier.volume29-
local.format.pages12-
dc.description.notesLIMBURGS UNIV CENTRUM,DEPT WNI,B-3590 DIEPENBEEK,BELGIUM.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
local.classdsPublValOverrule/internal_author_not_expected-
dc.identifier.doi10.1088/0305-4470/29/14/016-
dc.identifier.isiA1996VA53200016-
item.contributorpatrick, AE-
item.accessRightsClosed Access-
item.fullcitationpatrick, AE (1996) The distribution of the partition function of the Hopfield model with finite number of patterns. In: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 29(14). p. 3911-3922.-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.