Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3493
Full metadata record
DC FieldValueLanguage
dc.contributor.authorREIMANN, Peter-
dc.contributor.authorVAN DEN BROECK, Christian-
dc.contributor.authorBEX, Geert Jan-
dc.date.accessioned2007-11-28T15:36:01Z-
dc.date.available2007-11-28T15:36:01Z-
dc.date.issued1996-
dc.identifier.citationJOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 29(13). p. 3521-3535-
dc.identifier.issn0305-4470-
dc.identifier.urihttp://hdl.handle.net/1942/3493-
dc.description.abstractWe consider random patterns on the N-sphere which are uniformly distributed with the exception of a single symmetry-breaking orientation, along which they are Gaussian distributed. The unsupervised recognition of this orientation by different learning rules is studied in the large-N limit using the replica method. The model is simple enough to be analytically tractable and rich enough to exhibit most of the phenomena observed with other pattern distributions. A learning algorithm based on the minimization of a cost function is identified which reaches the upper theoretical limit imposed by the optimal (Bayes-) learning scenario. An implementation of this algorithm is proposed and tested numerically.-
dc.language.isoen-
dc.publisherIOP PUBLISHING LTD-
dc.titleA Gaussian scenario for unsupervised learning-
dc.typeJournal Contribution-
dc.identifier.epage3535-
dc.identifier.issue13-
dc.identifier.spage3521-
dc.identifier.volume29-
local.format.pages15-
dc.description.notesLIMBURGS UNIV CENTRUM,B-3590 DIEPENBEEK,BELGIUM.Reimann, P, LORAND EOTVOS UNIV,PUSKIN U 5-7,H-1088 BUDAPEST,HUNGARY.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1088/0305-4470/29/13/021-
dc.identifier.isiA1996UX09000021-
item.contributorREIMANN, Peter-
item.contributorVAN DEN BROECK, Christian-
item.contributorBEX, Geert Jan-
item.fullcitationREIMANN, Peter; VAN DEN BROECK, Christian & BEX, Geert Jan (1996) A Gaussian scenario for unsupervised learning. In: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 29(13). p. 3521-3535.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.