Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/3493Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | REIMANN, Peter | - |
| dc.contributor.author | VAN DEN BROECK, Christian | - |
| dc.contributor.author | BEX, Geert Jan | - |
| dc.date.accessioned | 2007-11-28T15:36:01Z | - |
| dc.date.available | 2007-11-28T15:36:01Z | - |
| dc.date.issued | 1996 | - |
| dc.identifier.citation | JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 29(13). p. 3521-3535 | - |
| dc.identifier.issn | 0305-4470 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/3493 | - |
| dc.description.abstract | We consider random patterns on the N-sphere which are uniformly distributed with the exception of a single symmetry-breaking orientation, along which they are Gaussian distributed. The unsupervised recognition of this orientation by different learning rules is studied in the large-N limit using the replica method. The model is simple enough to be analytically tractable and rich enough to exhibit most of the phenomena observed with other pattern distributions. A learning algorithm based on the minimization of a cost function is identified which reaches the upper theoretical limit imposed by the optimal (Bayes-) learning scenario. An implementation of this algorithm is proposed and tested numerically. | - |
| dc.language.iso | en | - |
| dc.publisher | IOP PUBLISHING LTD | - |
| dc.title | A Gaussian scenario for unsupervised learning | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 3535 | - |
| dc.identifier.issue | 13 | - |
| dc.identifier.spage | 3521 | - |
| dc.identifier.volume | 29 | - |
| local.format.pages | 15 | - |
| dc.description.notes | LIMBURGS UNIV CENTRUM,B-3590 DIEPENBEEK,BELGIUM.Reimann, P, LORAND EOTVOS UNIV,PUSKIN U 5-7,H-1088 BUDAPEST,HUNGARY. | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.bibliographicCitation.oldjcat | A1 | - |
| dc.identifier.doi | 10.1088/0305-4470/29/13/021 | - |
| dc.identifier.isi | A1996UX09000021 | - |
| item.accessRights | Closed Access | - |
| item.fulltext | No Fulltext | - |
| item.fullcitation | REIMANN, Peter; VAN DEN BROECK, Christian & BEX, Geert Jan (1996) A Gaussian scenario for unsupervised learning. In: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 29(13). p. 3521-3535. | - |
| item.contributor | REIMANN, Peter | - |
| item.contributor | VAN DEN BROECK, Christian | - |
| item.contributor | BEX, Geert Jan | - |
| Appears in Collections: | Research publications | |
SCOPUSTM
Citations
29
checked on Dec 4, 2025
WEB OF SCIENCETM
Citations
23
checked on Dec 12, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.