Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/35528
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoschker, HTS-
dc.contributor.authorCook, PLM-
dc.contributor.authorPolerecky, L-
dc.contributor.authorTHIRUVALLUR EACHAMBADI, Ragha-
dc.contributor.authorLozano, H-
dc.contributor.authorHidalgo-Martinez, S-
dc.contributor.authorKhalenkow, D-
dc.contributor.authorSpampinato, V-
dc.contributor.authorClaes , N-
dc.contributor.authorKundu, P-
dc.contributor.authorWang, D-
dc.contributor.authorBals, S-
dc.contributor.authorSand, KK-
dc.contributor.authorCavezza, F-
dc.contributor.authorHauffman, T-
dc.contributor.authorBjerg, JT-
dc.contributor.authorSkirtach, AG-
dc.contributor.authorKochan, K-
dc.contributor.authorMcKee, M-
dc.contributor.authorWood, B-
dc.contributor.authorBedolla, D-
dc.contributor.authorGianoncelli, A-
dc.contributor.authorGeerlings, NMJ-
dc.contributor.authorVan Gerven, N-
dc.contributor.authorRemaut, H-
dc.contributor.authorGeelhoed, JS-
dc.contributor.authorMillan-Solsona, R-
dc.contributor.authorFumagalli, L-
dc.contributor.authorNielsen, LP-
dc.contributor.authorFranquet, A-
dc.contributor.authorMANCA, Jean-
dc.contributor.authorGomila, G-
dc.contributor.authorMeysman, FJR-
dc.date.accessioned2021-10-18T09:21:55Z-
dc.date.available2021-10-18T09:21:55Z-
dc.date.issued2021-
dc.date.submitted2021-09-17T12:29:37Z-
dc.identifier.citationNature communications, 12 (1) , p. 3996-
dc.identifier.urihttp://hdl.handle.net/1942/35528-
dc.description.abstractFilamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures. Filamentous cable bacteria conduct electrical currents over centimeter distances through fibers embedded in their cell envelope. Here, Boschker et al. show that the fibers consist of a conductive core containing nickel proteins that is surrounded by an insulating protein shell.-
dc.description.sponsorshipThe authors thank Marlies Neiemeisland for assistance with Raman microscopy, Michiel Kienhuis for assistance with NanoSIMS analysis, Peter Hildebrandt and Diego Millo for helping with the interpretation of the Raman spectra, IONTOF for the Orbitrap HybridSIMS analysis, and Rene Fabregas for helping with finite-element numerical modeling for SDM. H.T.S.B. and F.J.R.M. were financially supported by the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). Research Foundation Flanders supported F.J.R.M., J.V.M., and R.T.E. through FWO grant G031416N, and F.J.R.M. and J.S.G. through FWO grant G038819N. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from NWO in the Netherlands (grant 023.005.049). The NanoSIMS facility at Utrecht University was financed through a large infrastructure grant by the Netherlands Organization for Scientific Research (NWO, grant no. 175.010.2009.011) and through a Research Infrastructure Fund by the Utrecht University Board. A.G.S. is supported by the Special Research Fund (BOF) of Ghent University (BOF14/IOP/003, BAS094-18,01IO3618) and FWO (G043219). The ToF-SIMS was funded by FWO Hercules grant (ZW/13/07) to J.V.M. and A.F. H.L., R.M.S., and G.G. were funded by the European Union H2020 Framework Programme (MSCA-ITN-2016) under grant agreement n721874.EU, the Spanish Agencia Estatal de Investigación and EU FEDER under grant agreements TEC2016-79156-P and TEC2015-72751-EXP, the Generalitat de Catalunya through 2017-SGR1079 grant and CERCA Program. G.G. was recipient of an ICREA Academia Award, and H.L. of a FPI fellowship (BES-2015-074799) from the Agencia Estatal de Investigación/Fondo Social Europeo. L.F. received funding from the European Research Council (grant agreement No. 819417) under the European Union’s Horizon 2020 research and innovation programme.-
dc.language.isoen-
dc.publisherNATURE RESEARCH-
dc.rightsThe Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.-
dc.subject.otherBacterial Proteins-
dc.subject.otherDeltaproteobacteria-
dc.subject.otherElectricity-
dc.subject.otherElectron Transport-
dc.subject.otherNickel-
dc.subject.otherElectric Conductivity-
dc.titleEfficient long-range conduction in cable bacteria through nickel protein wires-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.spage3996-
dc.identifier.volume12-
local.bibliographicCitation.jcatA1-
local.publisher.placeHEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeH2020-
local.relation.h2020721874-
dc.identifier.doi10.1038/s41467-021-24312-4-
dc.identifier.pmid34183682-
dc.identifier.isi000669944900006-
dc.identifier.eissn-
local.provider.typeWeb of Science-
local.uhasselt.internationalyes-
item.fullcitationBoschker, HTS; Cook, PLM; Polerecky, L; THIRUVALLUR EACHAMBADI, Ragha; Lozano, H; Hidalgo-Martinez, S; Khalenkow, D; Spampinato, V; Claes , N; Kundu, P; Wang, D; Bals, S; Sand, KK; Cavezza, F; Hauffman, T; Bjerg, JT; Skirtach, AG; Kochan, K; McKee, M; Wood, B; Bedolla, D; Gianoncelli, A; Geerlings, NMJ; Van Gerven, N; Remaut, H; Geelhoed, JS; Millan-Solsona, R; Fumagalli, L; Nielsen, LP; Franquet, A; MANCA, Jean; Gomila, G & Meysman, FJR (2021) Efficient long-range conduction in cable bacteria through nickel protein wires. In: Nature communications, 12 (1) , p. 3996.-
item.fulltextWith Fulltext-
item.validationecoom 2022-
item.contributorBoschker, HTS-
item.contributorCook, PLM-
item.contributorPolerecky, L-
item.contributorTHIRUVALLUR EACHAMBADI, Ragha-
item.contributorLozano, H-
item.contributorHidalgo-Martinez, S-
item.contributorKhalenkow, D-
item.contributorSpampinato, V-
item.contributorClaes , N-
item.contributorKundu, P-
item.contributorWang, D-
item.contributorBals, S-
item.contributorSand, KK-
item.contributorCavezza, F-
item.contributorHauffman, T-
item.contributorBjerg, JT-
item.contributorSkirtach, AG-
item.contributorKochan, K-
item.contributorMcKee, M-
item.contributorWood, B-
item.contributorBedolla, D-
item.contributorGianoncelli, A-
item.contributorGeerlings, NMJ-
item.contributorVan Gerven, N-
item.contributorRemaut, H-
item.contributorGeelhoed, JS-
item.contributorMillan-Solsona, R-
item.contributorFumagalli, L-
item.contributorNielsen, LP-
item.contributorFranquet, A-
item.contributorMANCA, Jean-
item.contributorGomila, G-
item.contributorMeysman, FJR-
item.accessRightsOpen Access-
crisitem.journal.eissn2041-1723-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
s41467-021-24312-4.pdfPublished version2.18 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

26
checked on May 8, 2024

Page view(s)

36
checked on Sep 7, 2022

Download(s)

38
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.