Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/35842
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHannula, M-
dc.contributor.authorKontinen, J-
dc.contributor.authorVIRTEMA, Jonni-
dc.date.accessioned2021-11-22T11:14:12Z-
dc.date.available2021-11-22T11:14:12Z-
dc.date.issued2018-
dc.date.submitted2021-11-22T11:12:51Z-
dc.identifier.citationLOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2018), SPRINGER INTERNATIONAL PUBLISHING AG, p. 190 -210-
dc.identifier.isbn978-3-319-72055-5-
dc.identifier.isbn978-3-319-72056-2-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/35842-
dc.description.abstractTeam semantics is the mathematical framework of modern logics of dependence and independence in which formulae are interpreted by sets of assignments (teams) instead of single assignments as in first-order logic. In order to deepen the fruitful interplay between team semantics and database dependency theory, we define Polyteam Semantics in which formulae are evaluated over a family of teams. We begin by defining a novel polyteam variant of dependence atoms and give a finite axiomatisation for the associated implication problem. We also characterise the expressive power of poly-dependence logic by properties of polyteams that are downward closed and definable in existential second-order logic (ESO). The analogous result is shown to hold for poly-independence logic and all ESO-definable properties.-
dc.language.isoen-
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AG-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.subject.otherTeam semantics-
dc.subject.otherDependency theory-
dc.subject.otherExpressive power-
dc.titlePolyteam Semantics-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateApril 6-9, 2020-
local.bibliographicCitation.conferencenameInternational Symposium on Logical Foundations of Computer Science (LFCS)-
local.bibliographicCitation.conferenceplaceDeerfield Beach, FL-
dc.identifier.epage210-
dc.identifier.spage190-
dc.identifier.volume10703-
local.bibliographicCitation.jcatC1-
local.publisher.placeGEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1007/978-3-319-72056-2_12-
dc.identifier.isi000541559100012-
local.provider.typeWeb of Science-
local.bibliographicCitation.btitleLOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2018)-
item.fulltextNo Fulltext-
item.contributorHannula, M-
item.contributorKontinen, J-
item.contributorVIRTEMA, Jonni-
item.fullcitationHannula, M; Kontinen, J & VIRTEMA, Jonni (2018) Polyteam Semantics. In: LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2018), SPRINGER INTERNATIONAL PUBLISHING AG, p. 190 -210.-
item.accessRightsClosed Access-
item.validationecoom 2021-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.