Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/35859
Title: Opto-electronic properties and solar cell efficiency modelling of Cu2ZnXS4 (X = Sn, Ge, Si) kesterites
Authors: Raty, JY
BRAMMERTZ, Guy 
VERMANG, Bart 
Nguyen, ND
Ratz, T
Issue Date: 2021
Publisher: IOP PUBLISHING LTD
Source: JOURNAL OF PHYSICS-ENERGY, 3 (3) (Art N° 035005)
Abstract: In this work, first-principles calculations of Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4 are performed to highlight the impact of the cationic substitution on the structural, electronic and optical properties of kesterite compounds. Direct bandgaps are reported with values of 1.32, 1.89 and 3.06 eV respectively for Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4 and absorption coefficients of the order of 10(4) cm(-1) are obtained, indicating the applicability of these materials as absorber layer for solar cell applications. In the second part of this study, ab initio results are used as input data to model the electrical power conversion efficiency of kesterite-based solar cells. In that perspective, we used an improved version of the Shockley-Queisser model including non-radiative recombination via an external parameter defined as the internal quantum efficiency. Based on predicted optimal absorber layer thicknesses, the variation of the solar cell maximal efficiency is studied as a function of the non-radiative recombination rate. Maximal efficiencies of 25.71%, 19.85% and 3.10% are reported respectively for Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4 for vanishing non-radiative recombination rate. Using an internal quantum efficiency value providing experimentally comparable VOC <i values, cell efficiencies of 15.88%, 14.98% and 2.66% are reported respectively for Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4. We confirm the suitability of Cu2ZnSnS4 in single junction solar cells, with a possible efficiency improvement of nearly 10% enabled through the reduction of the non-radiative recombination rate. In addition, Cu2ZnGeS4 appears to be an interesting candidate as top cell absorber layer for tandem approaches whereas Cu2ZnSiS4 might be interesting for transparent photovoltaic windows.
Keywords: kesterite;S compounds;first-principles calculations;Sn cation substitution;opto-electronic;efficiency modelling
Document URI: http://hdl.handle.net/1942/35859
ISSN: 2515-7655
e-ISSN: 2515-7655
DOI: 10.1088/2515-7655/abefbe
ISI #: 000667938300001
Rights: 2021 The Author(s). Published by IOP Publishing Ltd
Category: A1
Type: Journal Contribution
Validations: ecoom 2022
Appears in Collections:Research publications

Show full item record

WEB OF SCIENCETM
Citations

9
checked on Apr 22, 2024

Page view(s)

46
checked on Sep 7, 2022

Download(s)

22
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.