Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/35959
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGijbels, Irene-
dc.contributor.authorOMELKA, Marek-
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2021-11-30T11:40:43Z-
dc.date.available2021-11-30T11:40:43Z-
dc.date.issued2021-
dc.date.submitted2021-10-28T11:53:15Z-
dc.identifier.citationJournal of Multivariate Analysis (Print), 186 (Art N° 104804)-
dc.identifier.urihttp://hdl.handle.net/1942/35959-
dc.description.abstractConditional copulas describe the conditional dependence and the influence that covariates have on the dependence structure between two (or more) variables. Of interest is to test the null hypothesis that the covariates have a specific effect. This paper proposes an omnibus test for testing the null hypothesis of a specified effect of the covariates. The test statistic is designed for having power against many alternatives, and can be used to test for a variety of covariate effects (no effects, linear effects, partial effects, etc.). A special case is the testing problem that the covariates do not affect the dependence structure. In this semiparametric framework the marginal distribution functions are estimated using nonparametric kernel techniques and the parametric dependence model is estimated using maximum likelihood estimation. We establish the asymptotic distribution of the test statistic under the null hypothesis, and evaluate the finite-sample performance of the test via a simulation study, which also includes comparisons with alternative tests. A real data analysis illustrates the practical use of the test. (C) 2021 Elsevier Inc. All rights reserved.-
dc.description.sponsorshipResearch Fund KU Leuven, BelgiumKU Leuven [GOA/12/014, C16/20/002]; [GACR 19-00015S]-
dc.language.isoen-
dc.publisherELSEVIER INC-
dc.rights2021 Elsevier Inc. All rights reserved.-
dc.subject.otherAsymptotic distribution-
dc.subject.otherConditional copula-
dc.subject.otherSimplifying assumption-
dc.subject.otherTesting for parametric effects-
dc.subject.otherU-statistics-
dc.titleOmnibus test for covariate effects in conditional copula models-
dc.typeJournal Contribution-
dc.identifier.volume186-
local.bibliographicCitation.jcatA1-
dc.description.notesGijbels, I (corresponding author), Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B,Box 2400, B-3001 Heverlee, Belgium.; Gijbels, I (corresponding author), Katholieke Univ Leuven, Leuven Stat Res Ctr LStat, Celestijnenlaan 200B,Box 2400, B-3001 Heverlee, Belgium.-
dc.description.notesirene.gijbels@kuleuven.be-
local.publisher.place525 B STREET, STE 1900, SAN DIEGO, CA 92101-4495 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr104804-
dc.identifier.doi10.1016/j.jmva.2021.104804-
dc.identifier.isiWOS:000702870700016-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Gijbels, Irene] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B,Box 2400, B-3001 Heverlee, Belgium.-
local.description.affiliation[Gijbels, Irene] Katholieke Univ Leuven, Leuven Stat Res Ctr LStat, Celestijnenlaan 200B,Box 2400, B-3001 Heverlee, Belgium.-
local.description.affiliation[Omelka, Marek] Charles Univ Prague, Fac Math & Phys, Dept Probabil & Stat, Sokolovska 83, Prague 18675 8, Czech Republic.-
local.description.affiliation[Veraverbeke, Noel] Hasselt Univ, Ctr Stat, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Veraverbeke, Noel] North West Univ, Unit BMI, Potchefstroom, South Africa.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorGijbels, Irene-
item.contributorOMELKA, Marek-
item.contributorVERAVERBEKE, Noel-
item.fullcitationGijbels, Irene; OMELKA, Marek & VERAVERBEKE, Noel (2021) Omnibus test for covariate effects in conditional copula models. In: Journal of Multivariate Analysis (Print), 186 (Art N° 104804).-
item.accessRightsRestricted Access-
item.validationecoom 2022-
crisitem.journal.issn0047-259X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S0047259X21000828-main.pdf
  Restricted Access
Published version641.12 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.