Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/36037
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alam, Md Rakibul | - |
dc.contributor.author | Al Haddad, Christelle | - |
dc.contributor.author | Antoniou, Constantinos | - |
dc.contributor.author | Carreiras, Carlos | - |
dc.contributor.author | VANROMPAY, Yves | - |
dc.contributor.author | BRIJS, Tom | - |
dc.date.accessioned | 2021-12-05T17:00:55Z | - |
dc.date.available | 2021-12-05T17:00:55Z | - |
dc.date.issued | 2021 | - |
dc.date.submitted | 2021-11-23T16:24:13Z | - |
dc.identifier.citation | 2021 7TH International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), IEEE | - |
dc.identifier.isbn | 978-1-7281-8995-6 | - |
dc.identifier.uri | http://hdl.handle.net/1942/36037 | - |
dc.description.abstract | Naturalistic driving studies (NDS) collect driving data from various vehicles in order to observe driving behavior in an unobtrusive setting. Using an array of collection devices, NDS result in kinematic real-time data, but are also often enriched with additional data sets from surveys and external information from weather, road accidents, etc. This results in inevitable huge amounts of data that becomes challenging to handle due to its sheer volume and heterogeneity. Building big data systems from scratch requires high costs, and skilled labor and time, which slows down the progress of NDS. The aim of this paper is therefore to present a hybrid architecture based on big data-as-a-service (BDaaS) for NDS. The proposed architecture handles all aspects of big data challenges in NDS and inherently eases the deployment and maintenance of such systems. This enables NDS project members to focus more on the objective of the data collection rather than getting drowned in the big data management process. | - |
dc.description.sponsorship | This research was partially funded by the European Unions Horizon 2020 i-DREAMS project (Project Number: 814761) funded by European Commission under the MG-2-1-2018 Research and Innovation Action (RIA) and by the DAAD Project number 57474280 Verkehr-SuTra: Technologies for Sustainable Transportation, within the Programme: A New Passage to India — Deutsch-Indische Hochschulkooperationen ab 2019. | - |
dc.language.iso | en | - |
dc.publisher | IEEE | - |
dc.rights | 2021 IEEE | - |
dc.title | A big data-as-a-service architecture for naturalistic driving studies | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.conferencedate | 2021, JUN 16-17 | - |
local.bibliographicCitation.conferencename | 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) | - |
local.bibliographicCitation.conferenceplace | Heraklion, GREECE | - |
local.format.pages | 6 | - |
local.bibliographicCitation.jcat | C1 | - |
dc.description.notes | Alam, MR (corresponding author), Tech Univ Munich, Munich, Germany. | - |
dc.description.notes | rakibulmd.alam@tum.de; christelle.haddad@tum.de; c.antoniou@tum.de; | - |
dc.description.notes | cac@cardio-id.com; yves.vanrompay@uhasselt.be; tom.brijs@uhasselt.be | - |
local.publisher.place | 345 E 47TH ST, NEW YORK, NY 10017 USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
local.type.programme | H2020 | - |
local.relation.h2020 | 814761 | - |
dc.identifier.doi | 10.1109/MT-ITS49943.2021.9529322 | - |
dc.identifier.isi | WOS:000706846900061 | - |
local.provider.type | wosris | - |
local.bibliographicCitation.btitle | 2021 7TH International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) | - |
local.uhasselt.uhpub | yes | - |
local.description.affiliation | [Alam, Md Rakibul; Al Haddad, Christelle; Antoniou, Constantinos] Tech Univ Munich, Munich, Germany. | - |
local.description.affiliation | [Carreiras, Carlos] CardioID Technol, Lisbon, Portugal. | - |
local.description.affiliation | [Vanrompay, Yves; Brijs, Tom] Hasselt Univ, Hasselt, Belgium. | - |
local.uhasselt.international | yes | - |
item.validation | ecoom 2022 | - |
item.contributor | Alam, Md Rakibul | - |
item.contributor | Al Haddad, Christelle | - |
item.contributor | Antoniou, Constantinos | - |
item.contributor | Carreiras, Carlos | - |
item.contributor | VANROMPAY, Yves | - |
item.contributor | BRIJS, Tom | - |
item.fullcitation | Alam, Md Rakibul; Al Haddad, Christelle; Antoniou, Constantinos; Carreiras, Carlos; VANROMPAY, Yves & BRIJS, Tom (2021) A big data-as-a-service architecture for naturalistic driving studies. In: 2021 7TH International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), IEEE. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A big data-as-a-service architecture for naturalistic driving studies.pdf Restricted Access | Published version | 820.86 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.