Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36079
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNiyukuri, David-
dc.contributor.authorChibawara, Trust-
dc.contributor.authorNyasulu, Peter Suwirakwenda-
dc.contributor.authorDELVA, Wim-
dc.date.accessioned2021-12-07T16:02:49Z-
dc.date.available2021-12-07T16:02:49Z-
dc.date.issued2021-
dc.date.submitted2021-12-06T19:20:27Z-
dc.identifier.citationMathematics, 9 (21) (Art N° 2645)-
dc.identifier.urihttp://hdl.handle.net/1942/36079-
dc.description.abstract(1) Background: Calibration of Simpact Cyan can help to improve estimates related to the transmission dynamics of the Human Immunodeficiency Virus (HIV). Age-mixing patterns in sexual partnerships, onward transmissions, and temporal trends of HIV incidence are determinants which can inform the design of efficient prevention, and linkage-to-care programs. Using an agent-based model (ABM) simulation tool, we investigated, through a simulation study, if estimates of these determinants can be obtained with high accuracy by combining summary features from different data sources. (2) Methods: With specific parameters, we generated the benchmark data, and calibrated the default model in three scenarios based on summary features for comparison. For calibration, we used Latin Hypercube Sampling approach to generate parameter values, and Approximation Bayesian Computation to choose the best fitting ones. In all calibration scenarios the mean square root error was used as a measure to depict the estimates accuracy. (3) Results: The accuracy measure showed relatively no difference between the three scenarios. Moreover, we found that in all scenarios, age and gender strata incidence trends were poorly estimated. (4) Conclusions: Using synthetic benchmarks, we showed that it is possible to infer HIV transmission dynamics using an ABM of HIV transmission. Our results suggest that any type of summary feature provides adequate information to estimate HIV transmission network determinants. However, it is advisable to check the level of accuracy of the estimates of interest using benchmark data.</p>-
dc.description.sponsorshipNRF-TWAS-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).-
dc.subject.otheragent-based model-
dc.subject.otherindividual-based-
dc.subject.othercalibration-
dc.subject.othersummary statistics-
dc.subject.otherHIV-
dc.subject.otherphylogenetic tree-
dc.titleInferring HIV Transmission Network Determinants Using Agent-Based Models Calibrated to Multi-Data Sources-
dc.typeJournal Contribution-
dc.identifier.issue21-
dc.identifier.volume9-
local.format.pages33-
local.bibliographicCitation.jcatA1-
dc.description.notesNiyukuri, D (corresponding author), Stellenbosch Univ, Div Epidemiol & Biostat, Fac Med & Hlth Sci, ZA-7505 Cape Town, South Africa.; Niyukuri, D (corresponding author), Stellenbosch Univ, DST, NRF, South African Ctr Excellence Epidemiol Modelling, ZA-7600 Stellenbosch, South Africa.-
dc.description.noteskuriniyu@gmail.com; trust@aims.ac.za; pnyasulu@sun.ac.za;-
dc.description.notesdelvaw@sun.ac.za-
local.publisher.placeST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr2645-
dc.identifier.doi10.3390/math9212645-
dc.identifier.isiWOS:000718618800001-
dc.contributor.orcidNyasulu, Peter/0000-0003-2757-0663-
dc.identifier.eissn2227-7390-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Niyukuri, David; Chibawara, Trust; Delva, Wim] Stellenbosch Univ, Div Epidemiol & Biostat, Fac Med & Hlth Sci, ZA-7505 Cape Town, South Africa.-
local.description.affiliation[Niyukuri, David; Nyasulu, Peter Suwirakwenda; Delva, Wim] Stellenbosch Univ, DST, NRF, South African Ctr Excellence Epidemiol Modelling, ZA-7600 Stellenbosch, South Africa.-
local.description.affiliation[Nyasulu, Peter Suwirakwenda] Univ Witwatersrand, Div Epidemiol & Biostat, Sch Publ Hlth, Fac Hlth, ZA-2000 Johannesburg, South Africa.-
local.description.affiliation[Delva, Wim] Hasselt Univ, Ctr Stat, I BioStat, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Delva, Wim] Univ Ghent, Int Ctr Reprod Hlth, B-9000 Ghent, Belgium.-
local.description.affiliation[Delva, Wim] Katholieke Univ Leuven, Rega Inst Med Res, B-3000 Leuven, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorNiyukuri, David-
item.contributorChibawara, Trust-
item.contributorNyasulu, Peter Suwirakwenda-
item.contributorDELVA, Wim-
item.fullcitationNiyukuri, David; Chibawara, Trust; Nyasulu, Peter Suwirakwenda & DELVA, Wim (2021) Inferring HIV Transmission Network Determinants Using Agent-Based Models Calibrated to Multi-Data Sources. In: Mathematics, 9 (21) (Art N° 2645).-
item.accessRightsOpen Access-
item.validationecoom 2022-
crisitem.journal.eissn2227-7390-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
mathematics-09-02645-v2.pdfPublished version478.83 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.