Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36267
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOTH, Jakub-
dc.contributor.authorPOP, Sorin-
dc.contributor.authorYotov, Ivan-
dc.date.accessioned2021-12-17T11:08:24Z-
dc.date.available2021-12-17T11:08:24Z-
dc.date.issued2021-
dc.date.submitted2021-12-14T20:08:23Z-
dc.identifier.citationESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 55 (6) , p. 2849 -2897,-
dc.identifier.urihttp://hdl.handle.net/1942/36267-
dc.description.abstractWe study unsaturated poroelasticity, i.e., coupled hydro-mechanical processes in variably saturated porous media, here modeled by a non-linear extension of Biot's well-known quasi-static consolidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified version of the general model for multi-phase flow in deformable porous media, obtained under similar assumptions as usually considered for Richards' equation. In this work, existence of weak solutions is established in several steps involving a numerical approximation of the problem using a physically-motivated regularization and a finite element/finite volume discretization. Eventually, solvability of the original problem is proved by a combination of the Rothe and Galerkin methods, and further compactness arguments. This approach in particular provides the convergence of the numerical discretization to a regularized model for unsaturated poroelasticity. The final existence result holds under non-degeneracy conditions and natural continuity properties for the constitutive relations. The assumptions are demonstrated to be reasonable in view of geotechnical applications.-
dc.description.sponsorshipMeltzer Research Fund, Research Council of Norway (RCN) [250223]; FracFlow project - Equinor, Norway, through Akademiaavtalen; Research Foundation-Flanders (FWO), Belgium through the Odysseus programme FWO,[G0G1316N]; Akademia grant of Equinor; NSF National Science Foundation (NSF) [DMS 1818775, DMS 2111129]; Oberwolfach Simons Visiting Professorship-
dc.language.isoen-
dc.publisherEDP SCIENCES S A-
dc.rightsThis journal is currently published in open access under a Subscribe-to-Open model (S2O). S-
dc.subject.otherPoroelasticity; Biot model; variably saturated porous media; Richards'-
dc.subject.otherequation-
dc.titleGlobal existence of weak solutions to unsaturated poroelasticity-
dc.typeJournal Contribution-
dc.identifier.epage2897-
dc.identifier.issue6-
dc.identifier.spage2849-
dc.identifier.volume55-
local.format.pages49-
local.bibliographicCitation.jcatA1-
dc.description.notesBoth, JW (corresponding author), Univ Bergen, Dept Math, Allegaten 41, N-5007 Bergen, Norway.-
dc.description.notesjakub.both@uib.no-
local.publisher.place17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,-
local.publisher.placeFRANCE-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1051/m2an/2021063-
dc.identifier.isiWOS:000723784400005-
dc.contributor.orcidPop, Iuliu Sorin/0000-0001-9647-4347-
local.provider.typewosris-
local.uhasselt.uhpubyes-
local.description.affiliation[Both, Jakub Wiktor] Univ Bergen, Dept Math, Allegaten 41, N-5007 Bergen, Norway.-
local.description.affiliation[Pop, Iuliu Sorin] Hasselt Univ, Fac Sci, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Yotov, Ivan] Univ Pittsburgh, Dept Math, 301 Thackeray Hall, Pittsburgh, PA 15260 USA.-
local.uhasselt.internationalyes-
item.validationecoom 2022-
item.fullcitationBOTH, Jakub; POP, Sorin & Yotov, Ivan (2021) Global existence of weak solutions to unsaturated poroelasticity. In: ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 55 (6) , p. 2849 -2897,.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.contributorBOTH, Jakub-
item.contributorPOP, Sorin-
item.contributorYotov, Ivan-
crisitem.journal.issn2822-7840-
crisitem.journal.eissn2804-7214-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
m2an200148.pdfPublished version1.63 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

10
checked on Feb 12, 2026

WEB OF SCIENCETM
Citations

10
checked on Feb 18, 2026

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.