Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGUEIBE, Christophe-
dc.contributor.authorRutten, Jos-
dc.contributor.authorCAMPS, Johan-
dc.contributor.authorMoyaux, Dominique-
dc.contributor.authorSCHROEYERS, Wouter-
dc.contributor.authorAuer, Matthias-
dc.contributor.authorSCHREURS, Sonja-
dc.date.accessioned2022-01-17T12:20:01Z-
dc.date.available2022-01-17T12:20:01Z-
dc.date.issued2022-
dc.date.submitted2022-01-06T14:03:35Z-
dc.date.submitted2022-01-06T14:03:35Z-
dc.identifier.citationProcess safety and environmental protection, 158 , p. 576 -588-
dc.identifier.urihttp://hdl.handle.net/1942/36504-
dc.description.abstractAtmospheric radioxenon releases from fission-based medical isotope production facilities are the main contributors to the radioxenon background being observed in the International Monitoring System (IMS) for the verification of the Comprehensive Nuclear-Test-Ban Treaty. This background is impacting the detection capability of the IMS network for potential nuclear explosions. Reducing the radioxenon emissions from these facilities requires the optimization of the corresponding filtration process. The investigation of more efficient Xe adsorption materials than Activated Carbon (AC), which is currently used for this application, can play an important role for such an optimization. In this work, the Xe adsorption capacity of silver-exchanged zeolites (AgZs) is compared to the one of ACs in relevant conditions for fission-based medical isotope production facilities. The most promising AgZ candidate, a silver-exchanged titanosilicate (Ag-ETS-10), is investigated in more detail for its application to further reduce radioxenon releases. As operational conditions depend on the production and off-gas treatment processes, the effect of Xe concentration, flow rate, temperature and moisture on the Xe adsorption in Ag-ETS-10 is reported. Furthermore, since AgZs are far more expensive than ACs, it is crucial to be able to regenerate the material, whilst maintaining its full Xe adsorption properties for successive reuse. Accordingly, the durability of Ag-ETS-10 is investigated with regard to desorption and adsorption cycles but also with regard to gamma irradiation.-
dc.language.isoen-
dc.publisherElsevier-
dc.rights© 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.-
dc.subject.otherXenon adsorption-
dc.subject.otherRegeneration-
dc.subject.otherSilver-exchanged zeolite-
dc.subject.otherActivated carbon-
dc.subject.otherCTBT verification-
dc.subject.otherMedical isotope production facilities-
dc.titleApplication of silver-exchanged zeolite for radioxenon mitigation at fission-based medical isotope production facilities-
dc.typeJournal Contribution-
dc.identifier.epage588-
dc.identifier.spage576-
dc.identifier.volume158-
local.bibliographicCitation.jcatA1-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
dc.relation.referencesAchim, P., Generoso, S., Morin, M., Gross, P., Le Petit, G., Moulin, C., 2016. Characterization of Xe-133 global atmospheric background: implications for the International monitoring system of the comprehensive nuclear-test-ban treaty. J. Geophys. Res. Atmos. 121, 4951–4966. Achim, P., Generoso, S., Topin, S., Gross, P., Monfort, M., Moulin, C., Le Petit, G., Douysset, G., Morin, M., 2021. 6 months of radioxenon detection in western Europe with the SPALAX-New generation system - Part 2: atmospheric transport modelling. J. Environ. Radioact. 226. Auer, M., Axelsson, A., Blanchard, X., Bowyer, T.W., Brachet, G., Bulowski, I., Dubasov, Y., Elmgren, K., Fontaine, J.-P., Harms, W., Hayes, J.C., Heimbigner, T.R., McIntyre, J.I., Panisko, M.E., Popov, Y., Ringbom, A., Sartorius, H., Schmid, S., Schulze, J., Schlosser, C., Taffary, T., Weiss, W., Wernsperger, B., 2004. Intercomparison experiments of systems for the measurement of xenon radionuclides in the atmosphere. Appl. Radiat. Isot. 60, 863–877. Banerjee, D., Simon, C.M., Elsaidi, S.K., Haranczyk, M., Thallapally, P.K., 2018. Xenon gas separationand storage using metal-organic frameworks. Chem 4, 466–494 650- 650. Beyer, H.K., Jacobs, P.A., 1982. Chemical evidence for charged clusters in silver zeolites. In: Jacobs, P.A., Jaeger, N.I., Jíru, P., Schulz-Ekloff, G. (Eds.), Studies in Surface Science and Catalysis. Elsevier, pp. 95–102. Bowyer, T.W., 2020. A review of global radioxenon background research and issues. Pure Appl. Geophys. Bowyer, T.W., Kephart, R., Eslinger, P.W., Friese, J.I., Miley, H.S., Saey, P.R., 2013. Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions. J. Environ. Radioact. 115, 192–200. Bowyer, T.W., Eslinger, P.W., Cameron, I.M., Friese, J.I., Hayes, J.C., Metz, L.A., Miley, H.S., 2014. Potential impact of releases from a new Molybdenum-99 production facility on regional measurements of airborne xenon isotopes. J. Environ. Radioact. 129, 43–47. Braekers, D., Camps, J., Paridaens, J., Saey, P.R.J., Van der Meer, K., 2010. Reduction of radioxenon emissions from radiopharmaceutical facilities - A pilot study, Third European IRPA Congress, Helsinki, Finland. Byun, J.I., Hahm, D.S., 2020. Ambient xenon sampling using an Ag/ZSM-5 zeolite. J. Radio. Nucl. Chem. 323, 927–930. Carter, J.W., Husain, H., 1974. The simultaneous adsorption of carbon dioxide and water vapour by fixed beds of molecular sieves. Chem. Eng. Sci. 29, 267–273. Chemviron Carbon, 2005. Nuclearcarb 203C. Comprehensive Nuclear-Test-Ban Treaty, 1996. Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization, Vienna International Center, Vienna, Austria. CTBTO, 2021. https://www.ctbto.org/map/ (Accessed on 28 September 2021). Daniel, C., Elbaraoui, A., Aguado, S., Springuel-Huet, M.-A., Nossov, A., Fontaine, J.-P., Topin, S., Taffary, T., Deliere, L., Schuurman, Y., Farrusseng, D., 2013. Xenon capture on silver-loaded zeolites: characterization of very strong adsorption sites. J. Phys. Chem. C 117, 15122–15129. De Meutter, P., Camps, J., Delcloo, A., Deconninck, B., Termonia, P., 2016. On the capability to model the background and its uncertainty of CTBT-relevant radioxenon isotopes in Europe by using ensemble dispersion modeling. J. Environ. Radioact. 164, 280–290. De Meutter, P., Camps, J., Delcloo, A., Termonia, P., 2017. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling. Sci. Rep. 7. Deliere, L., Topin, S., Coasne, B., Fontaine, J.P., De Vito, S., Den Auwer, C., Solari, P.L., Daniel, C., Schuurman, Y., Farrusseng, D., 2014. Role of silver nanoparticles in enhanced xenon adsorption using silver-loaded zeolites. J. Phys. Chem. C 118, 25032–25040. Deliere, L., Coasne, B., Topin, S., Greau, C., Moulin, C., Farrusseng, D., 2016. Breakthrough in xenon capture and purification using adsorbent-supported silver nanoparticles. Chem. Eur. J. 22, 9660–9666. Doll, C.G., Sorensen, C.M., Bowyer, T.W., Friese, J.I., Hayes, J.C., Hoffmann, E., Kephart, R., 2014. Abatement of xenon and iodine emissions from medical isotope production facilities. J. Environ. Radioact. 130, 33–43. Extraordinary Adsorbents, 2021. https://extraordinaryadsorbents.com/ (Accessed on 28 November 2021). Faga, P., Moyaux, D., Deconninck, B., 2018. Method for producing a fraction of xenon radioisotopes, in particular Xe-133, fraction of xenon radioisotopes, in particular Xe-133, in: WIPO (Ed.), WO/2018/002161 Institut National des Radioéléments. Fernandez, A.F., Ooms, H., Brichard, B., Coeck, M., Coenen, S., Berghmans, F., Decreton, M., 2002. SCK center dot CEN gamma irradiation facilities for radiation tolerance assessment. 2002 IEEE radiation effects data workshop. Workshop Rec. 171–176. Fujie, K., Nakamura, A., Hidano, T., Kuroda, Y., Mori, T., Torigoe, H., 2010. Xenon Adsorbent, Xenon Enrichment Method, Xenon Enrichment Device, and Air Liquefaction and Separation Device, B01J20/3483 ed. Gaebler, P., Ceranna, L., Nooshiri, N., Barth, A., Cesca, S., Frei, M., Grunberg, I., Hartmann, G., Koch, K., Pilger, C., Ross, J.O., Dahm, T., 2019. A multi-technology analysis of the 2017 North Korean nuclear test. Solid Earth 10, 59–78. Goodwin, M.A., Britton, R., Davies, A.V., 2020. A consideration of radioxenon detections around the Korean peninsula. Pure Appl. Geophys. Goodwin, M.A., Davies, A.V., Britton, R., 2021. Analysis of environmental radioxenon detections in the UK. J. Environ. Radioact. 234, 106629. Gueibe, C., Kalinowski, M.B., Baré, J., Gheddou, A., Krysta, M., Kusmierczyk-Michulec, J., 2017. Setting the baseline for estimated background observations at IMS systems of four radioxenon isotopes in 2014. J. Environ. Radioact. 178–179, 297–314. Hirano, S., Tokunaga, K., Okaniwa, H., Fukui, M., 2019. Xenon Adsorbent, in: Office, U.S. P.a.T. (Ed.). Tosoh Corporation. Hoffman, I., Ungar, R.K., Bean, M., Yi, J., Servranckx, R., Zaganescu, C., Ek, N., Blanchard, X., Le Petit, G., Brachet, G., Achim, P., Taffary, T., 2009. Changes in radioxenon observations in Canada and Europe during medical isotope production facility shut down in 2008. J. Radioanal. Nucl. Chem. 282, 767–772. Ianovski, D., Munakata, K., Kanjo, S., Yokoyama, Y., Koga, A., Yamatsuki, S., Tanaka, K., Fukumatsu, T., Nishikawa, M., Igarashi, Y., 2002. Adsorption of noble gases on H- mordenite. J. Nucl. Sci. Technol. 39, 1213–1218. Kalinowski, M., Axelsson, A., Bean, M., Blanchard, X., Bowyer, T.W., Brachet, G., Hebel, S., McIntyre, J.I., Peters, J., Pistner, C., Raith, M., Ringbom, A., Saey, P.R.J., Schlosser, C., Stocki, T.J., Taffary, T., Ungar, R.K., 2010. Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios. Pure Appl. Geophys. 167, 517–539. Kalinowski, M.B., Tatlisu, H., 2020. Global radioxenon emission inventory from nuclear power plants for the calendar year 2014. Pure Appl. Geophys. Kepak, F., 1990. Removal of gaseous fission-products by adsorption. J. Radioanal. Nucl. Chem. 142, 215–230. Kitani, S., Takada, J., 1965. Adsorption of krypton and xenon on various adsorbents. J. Nucl. Sci. Technol. 2, 51–56. Kuznicki, S.M., Anson, A., Koenig, A., Kuznicki, T.M., Haastrup, T., Eyring, E.M., Hunter, D., 2007a. Xenon adsorption on modified ETS-10. J. Phys. Chem. C 111, 1560–1562. Kuznicki, S.M., Kelly, D.J.A., Bian, J.J., Lin, C.C.H., Liu, Y., Chen, J., Mitlin, D., Xu, Z.H., 2007b. Metal nanodots formed and supported on chabazite and chabazite-like surfaces. Microporous Mesoporous Mater. 103, 309–315. Larson, T., Ostman, C., Colmsjo, A., 2011. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air. Anal. Bioanal. Chem. 400, 449–458. Lee, S.K., Beyer, G.J., Lee, J.S., 2016. Development of industrial-scale fission Mo-99 production process using low enriched Uranium target. Nucl. Eng. Technol. 48, 613–623. Metz, L., Aydia, M., Bigles, C., Bowyer, T.W., Camps, J., Carranza, E., Di Tada, M., Dittrich, S., Friese, J.I., Gueibe, C., Harvey, J., Hoffman, E., Hoffman, I., Ibrahim, H., Ivan, A., Lee, J., Liu, L., Lucas, J., Mahoney, C., McIntyre, J.I., Moyaux, D., Nikkinen, M., Pitas, K., Ridikas, D., Saey, P., Sameh, A.H.A., Sarkis, D., Updegraff, D., Vandegrift, G.., 2014. WOSMIP IV - Workshop on Signatures of Medical and Industrial Isotope Production. Report PNNL-23165, Pacific Northwest National Laboratory. Moeller, D.W., Underhill, D.W., 1981. Review and evaluation of factors affecting noble- gas adsorption on activated carbon. Nucl. Saf. 22, 599–611. Monpezat, A., Topin, S., Deliere, L., Farrusseng, D., Coasne, B., 2019. Evaluation methods of adsorbents for air purification and gas separation at low concentration: case studies on xenon and krypton. Ind. Eng. Chem. Res. 58, 4560–4571. Munakata, K., Fukumatsu, T., Yamatsuki, S., Tanaka, K., Nishikawa, M., 1999. Adsorption equilibria of krypton, xenon, nitrogen and their mixtures on molecular sieve 5A and activated charcoal. J. Nucl. Sci. Technol. 36, 818–829. Munakata, K., Kanjo, S., Yamatsuki, S., Koga, A., Ianovski, D., 2003. Adsorption of noble gases on silver-mordenite. J. Nucl. Sci. Technol. 40, 695–697. Nan, Y., 2017. Adsorption of Iodine and Water on Silver-Exchanged Mordenite, Surface. Syracuse University. NEA, 2019. The supply of Medical Radioisotopes: 2019 Medical Isotope Demand and Capacity Projection for the 2019–2024 Period. Nuclear Energy Agency. Nucon International Inc, 2002. Nucon Nusorb noble gas delay carbons. PNNL, 2018. Workshop on Signatures of Man-Made Isotope Production VI. Report PNNL-26793, Pacific Northwest National Laboratory. Puertolas, B., Lopez, M.R., Navarro, M.V., Lopez, J.M., Murillo, R., Garcia, T., Mastral, A.M., 2010. Modelling the breakthrough curves obtained from the adsorption of propene onto microporous inorganic solids. Adsorpt. Sci. Technol. 28, 761–775. Rezaei, F., Webley, P., 2009. Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64, 5182–5191. Ringbom, A., Axelsson, A., Aldener, M., Auer, M., Bowyer, T.W., Fritioff, T., Hoffman, I., Khrustalev, K., Nikkinen, M., Popov, V., Popov, Y., Ungar, K., Wotawa, G., 2014. Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013. J. Environ. Radioact. 128, 47–63. Ringbom, A., Axelsson, A., Bjornham, O., Brannstrom, N., Fritioff, T., Grahn, H., Hennigor, S., Olsson, M., 2020. Radioxenon releases from a nuclear power plant: stack data and atmospheric measurements. Pure Appl. Geophys. Ruthven, D.M., 1984. Principles of adsorption and adsorption processes. Saey, P.R.J., 2009. The influence of radiopharmaceutical isotope production on the global radioxenon background. J. Environ. Radioact. 100, 396–406. Saey, P.R.J., Wotawa, G., De Geer, L.E., Axelsson, A., Bean, M., d’Amours, R., Elmgren, K., Peterson, J., Ringbom, A., Stocki, T.J., Ungar, R.K., 2006. Radioxenon background at high northern latitudes. J. Geophys. Res. Atmos. 111. Saey, P.R.J., Bean, M., Becker, A., Coyne, J., d’Amours, R., De Geer, L.E., Hogue, R., Stocki, T.J., Ungar, R.K., Wotawa, G., 2007. A long distance measurement of radioxenon in Yellowknife, Canada, in late October 2006. Geophys. Res. Lett. 34. Saey, P.R.J., Bowyer, T.W., Ringbom, A., 2010a. Isotopic noble gas signatures released from medical isotope production facilities-simulations and measurements. Appl. Radiat. Isot. 68, 1846–1854. Saey, P.R.J., Schlosser, C., Achim, P., Auer, M., Axelsson, A., Becker, A., Blanchard, X., Brachet, G., Cella, L., De Geer, L.E., Kalinowski, M.B., Le Petit, G., Peterson, J., Popov, V., Popov, Y., Ringbom, A., Sartorius, H., Taffary, T., Zahringer, M., 2010b. Environmental radioxenon levels in europe: a comprehensive overview. Pure Appl. Geophys. 499–515. Sameh, A.H.A., 2013. Production cycle for large scale fission Mo-99 separation by the processing of irradiated LEU uranium Silicide fuel element targets. Sci. Technol. Nucl. Install. 2013. Saxton, C.G., Kruth, A., Castro, M., Wright, P.A., Howe, R.F., 2010. Xenon adsorption in synthetic chabazite zeolites. Microporous Mesoporous Mater. 129, 68–73. Shi, M., Avila, A.M., Wu, L., Sawada, J.A., Kuznicki, T.M., Kuznicki, S.M., 2013. Air separation by silver titanosilicate with enhanced density. Sep. Purif. Technol. 118, 794–800. Sokolenko, V.I., Levenets, V.V., Vinokurov, E.I., Grigorova, T.K., Lonin, A.Y., Omelnik, A.P., Sibileva, R.M., Shchur, A.A., 2015. Study of iodine adsorption in the dynamic mode for several carbon adsorbents. Probl. At. Sci. Tech. 69–72. Underhill, D.W., 1981. Correlation of the specific surface-area and bulk-density of commercial charcoals with their adsorption capacity for radioactive krypton and xenon. Nucl. Sci. Eng. 79, 19–25. Underhill, D.W., Dicello, D.C., Scaglia, L.A., Watson, J.A., 1986. Factors affecting the adsorption of xenon on activated carbon. Nucl. Sci. Eng. 93, 411–414. Wotawa, G., Becker, A., Kalinowski, M., Saey, P., Tuma, M., Zahringer, M., 2010. Computation and analysis of the global distribution of the radioxenon isotope xe- 133 based on emissions from nuclear power plants and radioisotope production facilities and its relevance for the verification of the nuclear-test-ban treaty. Pure Appl. Geophys. 167, 541–557. Zahringer, M., Becker, A., Nikkinen, M., Saey, P., Wotawa, G., 2009. CTBT radioxenon monitoring for verification: today’s challenges. J. Radioanal. Nucl. Chem. 282, 737–742. Zhou, C.Y., Feng, S.J., Zhou, G.Q., Jin, Y.R., Liang, J.F., Xu, J.M., 2011. The behavior of xenon dynamic adsorption on granular activated carbon packed bed adsorber. J. Radioanal. Nucl. Chem. 287, 609–616.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.psep.2021.12.031-
dc.identifier.isiWOS:000740947300002-
local.provider.typePdf-
local.uhasselt.uhpubyes-
local.uhasselt.internationalno-
item.fullcitationGUEIBE, Christophe; Rutten, Jos; CAMPS, Johan; Moyaux, Dominique; SCHROEYERS, Wouter; Auer, Matthias & SCHREURS, Sonja (2022) Application of silver-exchanged zeolite for radioxenon mitigation at fission-based medical isotope production facilities. In: Process safety and environmental protection, 158 , p. 576 -588.-
item.validationecoom 2023-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorGUEIBE, Christophe-
item.contributorRutten, Jos-
item.contributorCAMPS, Johan-
item.contributorMoyaux, Dominique-
item.contributorSCHROEYERS, Wouter-
item.contributorAuer, Matthias-
item.contributorSCHREURS, Sonja-
crisitem.journal.issn0957-5820-
crisitem.journal.eissn1744-3598-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
2022_Gueibe_Application of AgZ for radioxenon mitigation at fission based MIPFs.pdf
  Restricted Access
Published version6.5 MBAdobe PDFView/Open    Request a copy
Manuscript_Application of AgZ for radioxenon mitigation_Revised_Clean.pdfPeer-reviewed author version1.52 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on May 18, 2024

Page view(s)

56
checked on Aug 10, 2022

Download(s)

14
checked on Aug 10, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.