Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/36564
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFRIAS DOMINGUEZ, Mabel-
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorFiliberto, Yaima-
dc.contributor.authorBello, Rafael-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2022-01-26T08:25:23Z-
dc.date.available2022-01-26T08:25:23Z-
dc.date.issued2021-
dc.date.submitted2022-01-17T05:44:43Z-
dc.identifier.citation2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), IEEE,-
dc.identifier.isbn978-0-7381-3366-9-
dc.identifier.issn2161-4393-
dc.identifier.urihttp://hdl.handle.net/1942/36564-
dc.description.abstractThis paper elaborates on the modeling and simulation of complex systems involving uncertainty. More explicitly, we are interested in situations in which experts hesitate about the exact values of variables when designing the model. Such situations can be modeled using Interval-valued Long-term Cognitive Networks (IVLTCNs). In this model, the activation values and the weights between neural concepts are expressed as interval grey numbers. Unlike other grey cognitive networks, our model neither imposes restrictions on the weights nor performs a whitenization process. The second contribution of this paper is a nonsynaptic grey backpropagation algorithm, which allows adjusting the learnable parameters of IVLTCNs under uncertainty conditions. Moreover, this learning algorithm does not alter the linear knowledge representations provided by domain experts during the modeling phase.-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesIEEE International Joint Conference on Neural Networks (IJCNN)-
dc.rights2021 IEEE-
dc.subject.otherlong-term interval cognitive networks-
dc.subject.otherinterval sets-
dc.subject.othernonsynaptic learning-
dc.titleNonsynaptic Backpropagation Learning of Interval-valued Long-term Cognitive Networks-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedateJUL 18-22, 2021-
local.bibliographicCitation.conferencenameInternational Joint Conference on Neural Networks (IJCNN)-
local.bibliographicCitation.conferenceplaceELECTR NETWORK-
local.format.pages9-
local.bibliographicCitation.jcatC1-
dc.description.notesFrias, M (corresponding author), Univ Camaguey, Dept Comp Sci, Camaguey, Cuba.-
dc.description.notesmabel.frias@reduc.edu.cu; napoles.gonzalo@gmail.com;-
dc.description.notesyaima.filiberto@amvsoluciones.com; rbellop@uclv.edu.cu;-
dc.description.noteskoen.vanhoof@uhasselt.be-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/IJCNN52387.2021.9533586-
dc.identifier.isiWOS:000722581702047-
local.provider.typewosris-
local.bibliographicCitation.btitle2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)-
local.description.affiliation[Frias, Mabel] Univ Camaguey, Dept Comp Sci, Camaguey, Cuba.-
local.description.affiliation[Napoles, Gonzalo] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands.-
local.description.affiliation[Filiberto, Yaima] Univ Hasselt, Fac Business Econ, Business Intelligence, Hasselt, Belgium.-
local.description.affiliation[Bello, Rafael] AMV Solut, Dept Res & Dev, Vigo, Spain.-
local.description.affiliation[Vanhoof, Koen] Univ Cent Villas, Dept Comp Sci, Santa Clara, Cuba.-
local.uhasselt.internationalyes-
item.validationecoom 2023-
item.contributorFRIAS DOMINGUEZ, Mabel-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorFiliberto, Yaima-
item.contributorBello, Rafael-
item.contributorVANHOOF, Koen-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationFRIAS DOMINGUEZ, Mabel; NAPOLES RUIZ, Gonzalo; Filiberto, Yaima; Bello, Rafael & VANHOOF, Koen (2021) Nonsynaptic Backpropagation Learning of Interval-valued Long-term Cognitive Networks. In: 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), IEEE,.-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Nonsynaptic Backpropagation Learning of Interval-valued Long-term Cognitive Networks.pdf
  Restricted Access
Published version940.46 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.