Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJESPERS, E-
dc.contributor.authorWAUTERS, Paul-
dc.date.accessioned2007-11-29T11:53:23Z-
dc.date.available2007-11-29T11:53:23Z-
dc.date.issued1993-
dc.identifier.citationJOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 55. p. 238-245-
dc.identifier.issn0263-6115-
dc.identifier.urihttp://hdl.handle.net/1942/3657-
dc.description.abstractLet A be a subring of a commutative ring B. If the natural mapping from the prime spectrum of B to the prime spectrum of A is injective (respectively bijective) then the pair (A, B) is said to have the injective (respectively bijective) Spec-map. We give necessary and sufficient conditions for a pair of rings A and B graded by a free abelian group to have the injective (respectively bijective) Spec-map. For this we first deal with the polynomial case. Let l be a field and k a subfield. Then the pair of polynomial rings (k[X], l[X]) has the injective Spec-map if and only if l is a purely inseparable extension of k.-
dc.language.isoen-
dc.publisherAUSTRALIAN MATHEMATICS PUBL ASSOC INC-
dc.titlePairs of rings with a bijective correspondence between the prime spectra-
dc.typeJournal Contribution-
dc.identifier.epage245-
dc.identifier.spage238-
dc.identifier.volume55-
local.format.pages8-
dc.description.notesECON HOGESCH LIMBURG,B-3590 DIEPENBEEK,BELGIUM. LIMBURGS UNIV CENT,B-3590 DIEPENBEEK,BELGIUM.JESPERS, E, MEM UNIV NEWFOUNDLAND,ST JOHNS A1C 5S7,NEWFOUNDLAND,CANADA.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isiA1993MG93200006-
item.fulltextNo Fulltext-
item.contributorJESPERS, E-
item.contributorWAUTERS, Paul-
item.fullcitationJESPERS, E & WAUTERS, Paul (1993) Pairs of rings with a bijective correspondence between the prime spectra. In: JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 55. p. 238-245.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.