Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/3670
Full metadata record
DC FieldValueLanguage
dc.contributor.authorENGEL, A-
dc.contributor.authorVAN DEN BROECK, Christian-
dc.date.accessioned2007-11-29T12:14:03Z-
dc.date.available2007-11-29T12:14:03Z-
dc.date.issued1993-
dc.identifier.citationPHYSICAL REVIEW LETTERS, 71(11). p. 1772-1775-
dc.identifier.issn0031-9007-
dc.identifier.urihttp://hdl.handle.net/1942/3670-
dc.description.abstractThe generalization abilities of neural networks for inferring a rule on the basis of examples can be characterized by the convergence of the learning error to the generalization error with increasing size of the training set. Using the replica technique, we calculate the maximum difference between training and generalization error for the ensemble of all perceptrons trained by a teacher perceptron and the maximal generalization error for the perceptrons that have a training error equal to zero. The results axe compared with the rigorous bounds provided by the Vapnik-Chervonenkis theorem.-
dc.language.isoen-
dc.publisherAMERICAN PHYSICAL SOC-
dc.titleSystems that can learn from examples - Replica calculation of uniform-convergence bounds for perceptrons-
dc.typeJournal Contribution-
dc.identifier.epage1775-
dc.identifier.issue11-
dc.identifier.spage1772-
dc.identifier.volume71-
local.format.pages4-
dc.description.notesLIMBURGS UNIV CENTRUM,B-3590 DIEPENBEEK,BELGIUM.ENGEL, A, GEORG AUGUST UNIV,INST THEORET PHYS,D-37073 GOTTINGEN,GERMANY.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isiA1993LX11900029-
item.contributorENGEL, A-
item.contributorVAN DEN BROECK, Christian-
item.accessRightsClosed Access-
item.fullcitationENGEL, A & VAN DEN BROECK, Christian (1993) Systems that can learn from examples - Replica calculation of uniform-convergence bounds for perceptrons. In: PHYSICAL REVIEW LETTERS, 71(11). p. 1772-1775.-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.