Please use this identifier to cite or link to this item:
                
       http://hdl.handle.net/1942/368Full metadata record
| DC Field | Value | Language | 
|---|---|---|
| dc.contributor.author | Lipsitz, Stuart R. | - | 
| dc.contributor.author | IBRAHIM, Joseph | - | 
| dc.contributor.author | MOLENBERGHS, Geert | - | 
| dc.date.accessioned | 2004-10-25T12:00:38Z | - | 
| dc.date.available | 2004-10-25T12:00:38Z | - | 
| dc.date.issued | 2000 | - | 
| dc.identifier.citation | JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 49(3). p. 287-296 | - | 
| dc.identifier.issn | 0035-9254 | - | 
| dc.identifier.uri | http://hdl.handle.net/1942/368 | - | 
| dc.description.abstract | We analyse longitudinal data on CD4 cell counts from patients who participated in clinical trials that compared two therapeutic treatments: zidovudine and didanosine. The investigators were interested in modelling the CD4 cell count as a function of treatment, age at base-line and disease stage at base-line. Serious concerns can be raised about the normality assumption of CD4 cell counts that is implicit in many methods and therefore an analysis may have to start with a transformation. Instead of assuming that we know the transformation (e.g. logarithmic) that makes the outcome normal and linearly related to the covariates, we estimate the transformation, by using maximum likelihood, within the Box–Cox family. There has been considerable work on the Box–Cox transformation for univariate regression models. Here, we discuss the Box–Cox transformation for longitudinal regression models when the outcome can be missing over time, and we also implement a maximization method for the likelihood, assumming that the missing data are missing at random. | - | 
| dc.description.sponsorship | We are grateful for the support provided by grants CA 57253, CA 55576, CA 70101-01, CA74015-01 and GM 29745 from the National Institutes of Health and by funding from the National Fonds voor Wetenschappelijk Onderzoek (Belgium, project `Sensitivity analysis for incomplete data'), and Nato collaborative research grant 950648. | - | 
| dc.language.iso | en | - | 
| dc.publisher | BLACKWELL PUBLISHING | - | 
| dc.rights | (C) 2000 Royal Statistical Society | - | 
| dc.subject | Longitudinal data | - | 
| dc.subject | Multivariate data | - | 
| dc.subject | Missing data | - | 
| dc.subject.other | CD4 cell counts; incomplete data; influence graph; maximum likelihood; sensitivity analysis | - | 
| dc.title | Using a Box-Cox transformation in the analysis of longitudinal data with incomplete responses | - | 
| dc.type | Journal Contribution | - | 
| dc.identifier.epage | 296 | - | 
| dc.identifier.issue | 3 | - | 
| dc.identifier.spage | 287 | - | 
| dc.identifier.volume | 49 | - | 
| local.bibliographicCitation.jcat | A1 | - | 
| local.type.refereed | Refereed | - | 
| local.type.specified | Article | - | 
| dc.bibliographicCitation.oldjcat | A1 | - | 
| dc.identifier.doi | 10.1111/1467-9876.00192 | - | 
| dc.identifier.isi | 000087038300008 | - | 
| item.validation | ecoom 2001 | - | 
| item.contributor | Lipsitz, Stuart R. | - | 
| item.contributor | IBRAHIM, Joseph | - | 
| item.contributor | MOLENBERGHS, Geert | - | 
| item.accessRights | Restricted Access | - | 
| item.fullcitation | Lipsitz, Stuart R.; IBRAHIM, Joseph & MOLENBERGHS, Geert (2000) Using a Box-Cox transformation in the analysis of longitudinal data with incomplete responses. In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 49(3). p. 287-296. | - | 
| item.fulltext | With Fulltext | - | 
| crisitem.journal.issn | 0035-9254 | - | 
| crisitem.journal.eissn | 1467-9876 | - | 
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Lipsitz_et_al-2000-Journal_of_the_Royal_Statistical_Society__Series_C_(Applied_Statistics).pdf Restricted Access  | Published version | 169.73 kB | Adobe PDF | View/Open Request a copy | 
SCOPUSTM   
 Citations
		
		
		
				
		
		
		
			29
		
		
		
				
		
		
		
	
			checked on Oct 28, 2025
		
	WEB OF SCIENCETM
 Citations
		
		
		
				
		
		
		
			26
		
		
		
				
		
		
		
	
			checked on Nov 2, 2025
		
	Google ScholarTM
		
		
   		    Check
	Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.